代码随想录算法训练营第十三天 | LeetCode 144. 二叉树的前序遍历、LeetCode 145. 二叉树的后序遍历、LeetCode 94. 二叉树的中序遍历

简介: 代码随想录算法训练营第十三天 | LeetCode 144. 二叉树的前序遍历、LeetCode 145. 二叉树的后序遍历、LeetCode 94. 二叉树的中序遍历

1. 二叉树理论基础

1.1 树型结构概念

树是一种非线性的数据结构,它是由nn>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:

  • 有一个特殊的结点,称为根结点,根结点没有前驱结点
  • 除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1T2......Tm,其中每一个集合Ti (1 <= i <= m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  • 树是递归定义的。

注意:

  • 树形结构中,子树之间不能有交集,否则就不是树形结构
  • 根节点是唯一的

1.2 概念

结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为6

树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为6

叶子结点或终端结点:度为0的结点称为叶结点; 如上图:BCHI...等节点为叶结点

双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:AB的父结点

孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:BA的孩子结点

根结点:一棵树中,没有双亲结点的结点;如上图:A

结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推

树的高度或深度:树中结点的最大层次; 如上图:树的高度为4

非终端结点或分支结点:度不为0的结点; 如上图:D、EFG...等节点为分支结点

兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点

堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:HI互为兄弟结点

结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先

子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙

森林:由mm>=0)棵互不相交的树组成的集合称为森林

1.3 树的表示形式

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法孩子表示法孩子双亲表示法孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子兄弟表示法

class Node {
    int value; // 树中存储的数据
    Node firstChild; // 第一个孩子引用
    Node nextBrother; // 下一个兄弟引用
}

1.4 二叉树概念

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成

从上图可以看出:

  1. 二叉树不存在度大于2的结点
  2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的:

1.5 两种特殊的二叉树

  1. 满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵二叉树的层数为K,且结点总数是,则它就是满二叉树。如左图所示
  2. 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0n-1的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。如右图所示

1.6 二叉树的性质

  1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有(i>0)个结点
  2. 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是(k>=0)
  3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0n2+1。即叶子结点的个数比度为2的节点多一个
  4. 具有n个结点的完全二叉树的深度k为上取整
  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有
  • 若i>0,双亲序号:(i-1)/2i=0i为根结点编号,无双亲结点
  • 若2i+1<n,左孩子序号:2i+1,否则无左孩子
  • 若2i+2<n,右孩子序号:2i+2,否则无右孩子

1.7 二叉树的存储

顺序存储对树这种一对多的关系结构,实现起来是比较困难的,但也可以实现。先来看看完全二叉树的顺序存储,一棵完全二叉树如下图所示:

将这棵二叉树存入数组中相应的下标对应其同样的位置,如下图所示:

二叉树的链式存储是通过一个一个的节点引用起来的,结构示意图如下:

1.8 二叉树的遍历

1.8.1 前中后序遍历

学习二叉树结构,最简单的方式就是遍历。所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容、节点内容加1)。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。

在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,如果按照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的。如果N代表根节点,L代表根节点的左子树,R代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:

  • NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点--->根的左子树--->根的右子树
  • LNR:中序遍历(Inorder Traversal)——根的左子树--->根节点--->根的右子树
  • LRN:后序遍历(Postorder Traversal)——根的左子树--->根的右子树--->根节点。
1.8.2 层序遍历

 层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

2. 二叉树遍历

2.1 递归思路(完成下面下个问题,可以养成一个好的递归思路)

  1. 确定递归函数的参数和返回值:返回值void,因为我们把结果放在一个list集合中了,参数则是根节点和集合list,集合list是放遍历的结果
  2. 确定终止条件:因为是深度搜索,所以如果根节点遇到null就返回
  3. 确定单层递归的逻辑:以前序遍历举例,“根左右”的顺序,首先集合就要先add根节点的值;然后到左,就是向左遍历,就是递归调用函数,传参(左孩子,集合);然后到右,就是向右遍历,就是递归调用函数,传参(右孩子,集合)
  4. 同理中序遍历就是“左根右”,后序遍历就是“左右根”

2.2 代码

// 前序遍历·递归·LC144_二叉树的前序遍历
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<Integer>();
        preorder(root, result);
        return result;
    }
    public void preorder(TreeNode root, List<Integer> result) {
        if (root == null) {
            return;
        }
        result.add(root.val);
        preorder(root.left, result);
        preorder(root.right, result);
    }
}
// 中序遍历·递归·LC94_二叉树的中序遍历
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        inorder(root, res);
        return res;
    }
    void inorder(TreeNode root, List<Integer> list) {
        if (root == null) {
            return;
        }
        inorder(root.left, list);
        list.add(root.val);             // 注意这一句
        inorder(root.right, list);
    }
}
// 后序遍历·递归·LC145_二叉树的后序遍历
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        postorder(root, res);
        return res;
    }
    void postorder(TreeNode root, List<Integer> list) {
        if (root == null) {
            return;
        }
        postorder(root.left, list);
        postorder(root.right, list);
        list.add(root.val);             // 注意这一句
    }
}

3. LeetCode 144. 二叉树的前序遍历

3.1 非递归思路

  1. 编程里如何实现递归的逻辑呢?也是用栈这种数据结构的,因此使用迭代法模拟递归时也是用栈的
  2. 我们用栈模拟递归时,是把二叉树的根的左右孩子按“从右到左”的顺序放入栈中,因为这样出栈时才是“从左到右”,出栈时先把左的出栈了放入集合list中,再把出栈的元素的孩子按“从右到左”的顺序入栈,以此类推
  3. 由于根节点是先出栈的,所以呈现出的依然是“根左右”的顺序

3.2 代码

// 前序遍历顺序:中-左-右,入栈顺序:中-右-左
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        if (root == null){
            return result;
        }
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while (!stack.isEmpty()){
            TreeNode node = stack.pop();
            result.add(node.val);
            if (node.right != null){
                stack.push(node.right);
            }
            if (node.left != null){
                stack.push(node.left);
            }
        }
        return result;
    }
}

4. LeetCode 145. 二叉树的后序遍历

4.1 非递归思路

  1. 编程里如何实现递归的逻辑呢?也是用栈这种数据结构的,因此使用迭代法模拟递归时也是用栈的
  2. 在前序遍历的基础上,我们把根的左右孩子按“从左到右”的顺序先入栈,由于是根先出栈,那么此时出栈的顺序就是“根右左”,我们将集合翻转一下,就是“左右根”的顺序,那就是后序遍历的顺序了

4.2 代码

// 后序遍历顺序 左-右-中 入栈顺序:中-左-右 出栈顺序:中-右-左, 最后翻转结果
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        if (root == null){
            return result;
        }
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while (!stack.isEmpty()){
            TreeNode node = stack.pop();
            result.add(node.val);
            if (node.left != null){
                stack.push(node.left);
            }
            if (node.right != null){
                stack.push(node.right);
            }
        }
        Collections.reverse(result);
        return result;
    }
}

5. LeetCode 94. 二叉树的中序遍历

5.1 非递归思路

1. 由于中序遍历的特殊性无法在以上的代码作更改而实现,因此需要别的实现方法

2. 我们处理二叉树时有两步关键:访问节点和处理节点

  • 访问节点:就是根据根节点一点一点访问
  • 处理节点:就是放入集合中,按照我们输出的顺序

3. 由于我们的顺序是“左根右”,而我们先访问到的一定是根节点,因此我们设置一个指针,访问到的节点都先入栈,当我们遇到左孩子为空时就弹出该节点,右孩子为空时说明是叶子节点,就弹出该节点的父节点

4. 我们的循环终止条件就是指针和栈同时为空时就结束循环

5. 我们的终止是一路向左,左为空就先从栈里弹出一个元素,再到这个元素的右孩子,再一路向左,循环往复

5.2 代码

// 中序遍历顺序: 左-中-右 入栈顺序: 左-右
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        if (root == null){
            return result;
        }
        Stack<TreeNode> stack = new Stack<>();
        TreeNode cur = root;
        while (cur != null || !stack.isEmpty()){
           if (cur != null){
               stack.push(cur);
               cur = cur.left;
           }else{
               cur = stack.pop();
               result.add(cur.val);
               cur = cur.right;
           }
        }
        return result;
    }
}
目录
打赏
0
0
0
0
9
分享
相关文章
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
65 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
|
11天前
|
Go
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣437 / 236 )(Go语言版)
本文深入探讨二叉树中路径与祖先问题,涵盖两道经典题目:LeetCode 437(路径总和 III)和236(最近公共祖先)。对于路径总和 III,文章分析了双递归暴力解法与前缀和优化方法,后者通过哈希表记录路径和,将时间复杂度从O(n²)降至O(n)。在最近公共祖先问题中,采用后序遍历递归查找,利用“自底向上”的思路确定最近公共祖先节点。文中详细解析代码实现与核心要点,帮助读者掌握深度追踪技巧,理解树结构中路径与节点关系的本质。这类问题在面试中高频出现,掌握其解法意义重大。
36 4
|
17天前
|
【LeetCode 热题100】深入理解二叉树结构变化与路径特性(力扣104 / 226 / 114 / 543)(Go语言版)
本博客深入探讨二叉树的深度计算、结构变换与路径分析,涵盖四道经典题目:104(最大深度)、226(翻转二叉树)、114(展开为链表)和543(二叉树直径)。通过递归与遍历策略(前序、后序等),解析每题的核心思路与实现方法。结合代码示例(Go语言),帮助读者掌握二叉树相关算法的精髓。下一讲将聚焦二叉树构造问题,欢迎持续关注!
47 10
【二叉树遍历入门:从中序遍历到层序与右视图】【LeetCode 热题100】94:二叉树的中序遍历、102:二叉树的层序遍历、199:二叉树的右视图(详细解析)(Go语言版)
本文详细解析了二叉树的三种经典遍历方式:中序遍历(94题)、层序遍历(102题)和右视图(199题)。通过递归与迭代实现中序遍历,深入理解深度优先搜索(DFS);借助队列完成层序遍历和右视图,掌握广度优先搜索(BFS)。文章对比DFS与BFS的思维方式,总结不同遍历的应用场景,为后续构造树结构奠定基础。
110 10
|
17天前
|
【LeetCode 热题100】【二叉树构造题精讲:前序 + 中序建树 & 有序数组构造 BST】(详细解析)(Go语言版)
本文详细解析了二叉树构造的两类经典问题:通过前序与中序遍历重建二叉树(LeetCode 105),以及将有序数组转化为平衡二叉搜索树(BST,LeetCode 108)。文章从核心思路、递归解法到实现细节逐一拆解,强调通过索引控制子树范围以优化性能,并对比两题的不同构造逻辑。最后总结通用构造套路,提供进阶思考方向,帮助彻底掌握二叉树构造类题目。
77 9
|
2月前
|
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
62 9
 算法系列之数据结构-二叉树
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
819 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
132 2
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
89 5

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等