手把手搭建一个【卷积神经网络】

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
大数据开发治理平台 DataWorks,不限时长
简介: 本文介绍卷积神经网络的入门案例,通过搭建和训练一个模型,来对10种常见的物体进行识别分类;

 前言

本文介绍卷积神经网络的入门案例,通过搭建和训练一个模型,来对10种常见的物体进行识别分类;使用到CIFAR10数据集,它包含10 类,即:“飞机”,“汽车”,“鸟”,“猫”,“鹿”, “狗”,“青蛙”,“马”,“船”,“卡车” ;共 60000 张彩色图片;通过搭建和训练卷积神经网络模型,对图像进行分类,能识别出图像是“汽车”,或“鸟”,还是其它。


思路流程

    1. 导入 CIFAR10 数据集
    2. 探索集数据,并进行数据预处理
    3. 构建模型(搭建神经网络结构、编译模型)
    4. 训练模型(把数据输入模型、评估准确性、作出预测、验证预测)  
    5. 使用训练好的模型


    一、导入 CIFAR10 数据集

    使用到CIFAR10数据集,它包含10 类,即:“飞机”,“汽车”,“鸟”,“猫”,“鹿”, “狗”,“青蛙”,“马”,“船”,“卡车” ;共 60000 张彩色图片;

    此数据集中 50000 个样例被作为训练集(每张图片对于一个标签),剩余 10000 个样例作为测试集(每张图片也对于一个标签)。类别之间相互独立,不存在重叠的部分。使用以下代码完成数据集导入:

    (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

    image.gif


    二、探索集数据,并进行数据预处理

    将测试集的前 30 张图片和类名打印出来

    class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
                   'dog', 'frog', 'horse', 'ship', 'truck']
    plt.figure(figsize=(10,10))
    for i in range(30):
        plt.subplot(5,6,i+1)
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)
        plt.imshow(train_images[i], cmap=plt.cm.binary)
        # 由于 CIFAR 的标签是 array, 因此需要额外的索引(index)。
        plt.xlabel(class_names[train_labels[i][0]])
    plt.show()

    image.gif

    打印出来的效果是这样的:

    image.gif

    数据集预处理

    下面进行数据集预处理,将像素的值标准化至0到1的区间内:

    # 将像素的值标准化至0到1的区间内。
    train_images, test_images = train_images / 255.0, test_images / 255.0

    image.gif

    为什么是除以255呢?由于图片的像素范围是0~255,我们把它变成0~1的范围,于是每张图像(训练集、测试集)都除以255。


    三、构建模型

    常见卷积神经网络(CNN),主要由几个 卷积层Conv2D 和 池化层MaxPooling2D 层组成。卷积层池化层的叠加实现对输入数据的特征提取,最后连接全连接层实现分类。

    1)特征提取——卷积层池化层

    CNN 的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。通常图像使用 RGB 色彩模式,color_channels(R,G,B) 分别对应 RGB 的三个颜色通道,即:image_height 和 image_width 根据图像的像素高度、宽度决定;color_channels是3,对应RGB的3通道。

    CIFAR 数据集中的图片,形状是 (32, 32, 3),我们可以在声明第一层时将形状赋值给参数 input_shape

    model = models.Sequential()
    model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation='relu'))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation='relu'))

    image.gif

    查看一下网络模型:tf.keras.utils.plot_model(model)

    image.gif

    在上面的模型种每个 Conv2D 和 MaxPooling2D 层的输出都是一个三维的张量 (Tensor),其形状描述了 (height, width, channels)。越深的层中,宽度和高度都会收缩。

    2)实现分类——全连接层

    Dense 层等同于全连接 (Full Connected) 层,通过上面的卷积层和池化层,我们已经提取到图像的特征了,下面通过搭建Dense 层实现分类。

    Dense 层的输入为向量(一维),但前面层的输出是3维的张量 (Tensor) 即:(4, 4, 64)。因此您需要将三维张量展开 (Flatten) 到1维,之后再传入一个或多个 Dense 层。

    model.add(layers.Flatten())
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dense(10))

    image.gif

    CIFAR 数据集有 10 个类,因此您最终的 Dense 层需要 10 个输出及一个 softmax 激活函数。

    查看完整的 CNN 结构:tf.keras.utils.plot_model(model)

    image.gif

    或者用这样方式看看:model.summary()

    image.gif

    可以看出,在被传入两个 Dense 层之前,通过Flatten层处理后,形状为 (4, 4, 64) 的输出被展平成了形状为 (1024) 的向量。

    3)编译模型

    主要是为模型选择损失函数loss、优化器 optimizer、衡量指标metrics(通常用准确度accuracy 来衡量的)

    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                  metrics=['accuracy'])

    image.gif


    四、训练模型

    这里我们输入准备好的训练集数据(包括图像、对应的标签),测试集的数据(包括图像、对应的标签),模型一共训练10次

    history = model.fit(train_images, train_labels, epochs=10, 
                        validation_data=(test_images, test_labels))

    image.gif

    下图是训练过程的截图:

    image.gif编辑

    通常loss越小越好,对了解释下什么是loss;简单来说是 模型预测值 和 真实值 的相差的值,反映模型预测的结果和真实值的相差程度;

    通常准确度accuracy 越高,模型效果越好。

    评估模型

    plt.plot(history.history['accuracy'], label='accuracy')
    plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
    plt.xlabel('Epoch')
    plt.ylabel('Accuracy')
    plt.ylim([0.5, 1])
    plt.legend(loc='lower right')
    plt.show()
    test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
    print("测试集的准确度", test_acc)

    image.gif

    看看效果:

    image.gif


    五、使用模型

    通常使用 model.predict( )  函数进行预测。

    完成代码:

    import tensorflow as tf
    from tensorflow.keras import datasets, layers, models
    import matplotlib.pyplot as plt
    # 导入 CIFAR10 数据集
    (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
    # 将测试集的前 30 张图片和类名打印出来
    class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
                   'dog', 'frog', 'horse', 'ship', 'truck']
    plt.figure(figsize=(10,10))
    for i in range(30):
        plt.subplot(5,6,i+1)
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)
        plt.imshow(train_images[i], cmap=plt.cm.binary)
        # 由于 CIFAR 的标签是 array, 因此需要额外的索引(index)。
        plt.xlabel(class_names[train_labels[i][0]])
    plt.show()
    # 下面进行数据集预处理,将像素的值标准化至0到1的区间内:
    train_images, test_images = train_images / 255.0, test_images / 255.0
    # 构建模型
    # 1)特征提取——卷积层与池化层
    model = models.Sequential()
    model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation='relu'))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation='relu'))
    # 2)实现分类——全连接层
    model.add(layers.Flatten())
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dense(10))
    # 3)编译模型
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                  metrics=['accuracy'])
    # 训练模型
    history = model.fit(train_images, train_labels, epochs=10, 
                        validation_data=(test_images, test_labels))
    # 评估模型
    plt.plot(history.history['accuracy'], label='accuracy')
    plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
    plt.xlabel('Epoch')
    plt.ylabel('Accuracy')
    plt.ylim([0.5, 1])
    plt.legend(loc='lower right')
    plt.show()
    test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
    print("测试集的准确度", test_acc)

    image.gif

    参考:一篇文章“简单”认识《卷积神经网络》(更新版)

    卷积神经网络(Convolutional Neural Network, CNN)  |  TensorFlow Core


    相关文章
    |
    2天前
    |
    机器学习/深度学习 人工智能 算法
    海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
    海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物('蛤蜊', '珊瑚', '螃蟹', '海豚', '鳗鱼', '水母', '龙虾', '海蛞蝓', '章鱼', '水獭', '企鹅', '河豚', '魔鬼鱼', '海胆', '海马', '海豹', '鲨鱼', '虾', '鱿鱼', '海星', '海龟', '鲸鱼')数据集进行训练,得到一个识别精度较高的模型文件,然后使用Django开发一个Web网页平台操作界面,实现用户上传一张海洋生物图片识别其名称。
    37 7
    海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
    |
    12天前
    |
    机器学习/深度学习 算法 计算机视觉
    卷积神经网络(CNN)的工作原理深度解析
    【6月更文挑战第14天】本文深度解析卷积神经网络(CNN)的工作原理。CNN由输入层、卷积层、激活函数、池化层、全连接层和输出层构成。卷积层通过滤波器提取特征,激活函数增加非线性,池化层降低维度。全连接层整合特征,输出层根据任务产生预测。CNN通过特征提取、整合、反向传播和优化进行学习。尽管存在计算量大、参数多等问题,但随着技术发展,CNN在计算机视觉领域的潜力将持续增长。
    |
    2天前
    |
    机器学习/深度学习 人工智能 算法
    【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
    昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集('蜜蜂', '甲虫', '蝴蝶', '蝉', '蜻蜓', '蚱蜢', '蛾', '蝎子', '蜗牛', '蜘蛛')进行训练,得到一个识别精度较高的H5格式模型文件,然后使用Django搭建Web网页端可视化操作界面,实现用户上传一张昆虫图片识别其名称。
    45 7
    【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
    |
    3天前
    |
    机器学习/深度学习 人工智能 算法
    【球类识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+TensorFlow
    球类识别系统,本系统使用Python作为主要编程语言,基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集 '美式足球', '棒球', '篮球', '台球', '保龄球', '板球', '足球', '高尔夫球', '曲棍球', '冰球', '橄榄球', '羽毛球', '乒乓球', '网球', '排球'等15种常见的球类图像作为数据集,然后进行训练,最终得到一个识别精度较高的模型文件。再使用Django开发Web网页端可视化界面平台,实现用户上传一张球类图片识别其名称。
    33 7
    【球类识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+TensorFlow
    |
    3天前
    |
    机器学习/深度学习 PyTorch 算法框架/工具
    认识卷积神经网络
    卷积神经网络(CNN)是深度学习中用于图像处理的关键模型,它通过卷积层自动学习图像特征,池化层降低计算复杂度并保持重要特征,全连接层则用于分类或回归任务。卷积层使用可学习的滤波器扫描图像,检测特征;池化层通常采用最大池化或平均池化减少数据维度;全连接层连接所有特征以得出最终预测。CNN设计灵感来源于生物视觉系统,有效处理图像的网格结构数据,尤其适合图像识别和分类任务。
    |
    7天前
    |
    机器学习/深度学习 网络架构 计算机视觉
    VGG深度卷积神经网络架构
    VGG深度卷积神经网络架构
    |
    5天前
    |
    机器学习/深度学习 算法 计算机视觉
    没有公式,不要代码,让你理解 RCNN:目标检测中的区域卷积神经网络
    没有公式,不要代码,让你理解 RCNN:目标检测中的区域卷积神经网络
    10 0
    没有公式,不要代码,让你理解 RCNN:目标检测中的区域卷积神经网络
    |
    5天前
    |
    机器学习/深度学习 自然语言处理 TensorFlow
    深入浅出:理解和实现深度学习中的卷积神经网络(CNN)
    在当今的数据驱动世界,深度学习已经成为许多领域的关键技术。本文将深入探讨卷积神经网络(CNN)的原理、结构和应用,旨在帮助读者全面理解这项强大的技术,并提供实际的实现技巧。
    22 0
    |
    11天前
    |
    机器学习/深度学习 自然语言处理 前端开发
    深度学习-[数据集+完整代码]基于卷积神经网络的缺陷检测
    深度学习-[数据集+完整代码]基于卷积神经网络的缺陷检测
    |
    12天前
    |
    机器学习/深度学习 算法 PyTorch
    【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
    【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用