C++数据结构AVL树

简介: C++数据结构AVL树

AVL树

📟作者主页:慢热的陕西人

🌴专栏链接:C++

📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言

本博客主要内容介绍数据结构中的avl树



AVL树

Ⅰ.avl树

底层结构

前面对map/multimap/set/multiset进行了简单的介绍,在其文档介绍中发现,这几个容器有个 共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中 插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此 map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。

Ⅱ. avl树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查 找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii 和E.M.Landis在1962年 发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右 子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均 搜索长度。 一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

  • 如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O ( l o g 2 n ) O(log_2 n)O(log2n),搜索时间复杂度O(l o g 2 n log_2 nlog2n)。

Ⅱ. Ⅰ AVL树节点的定义

二叉树节点的定义:

template<class T>
struct AVLTreeNode
{
 AVLTreeNode(const T& data)
     : _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
 , _data(data), _bf(0)
 {}
 AVLTreeNode<T>* _pLeft;   // 该节点的左孩子
 AVLTreeNode<T>* _pRight;  // 该节点的右孩子
 AVLTreeNode<T>* _pParent; // 该节点的双亲
 T _data;
 int _bf;                  // 该节点的平衡因子
};

Ⅱ. Ⅱ AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么 AVL树的插入过程可以分为两步:

bool Insert(const T& data)
{
    // 1. 先按照二叉搜索树的规则将节点插入到AVL树中
    // ...
    // 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否
破坏了AVL树
    //   的平衡性
 /*
 pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
 的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
  1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
  2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
 此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
  1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
成0,此时满足
     AVL树的性质,插入成功
  2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
新成正负1,此
     时以pParent为根的树的高度增加,需要继续向上更新
  3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
行旋转处理
 */
 while (pParent)
 {
        // 更新双亲的平衡因子
 if (pCur == pParent->_pLeft)
 pParent->_bf--;
 else
 pParent->_bf++;
 // 更新后检测双亲的平衡因子
 if (0 == pParent->_bf)
       {    
            break;
       }
 else if (1 == pParent->_bf || -1 == pParent->_bf)
 {
              // 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲
为根的二叉树
              // 的高度增加了一层,因此需要继续向上调整
 pCur = pParent;
 pParent = pCur->_pParent;
 }
 else
 {
 // 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent
 // 为根的树进行旋转处理
              if(2 == pParent->_bf)
             {
                  // ...
             }
              else
             {
                  // ...
             }
 }
 }
 return true;
}

Ⅱ. Ⅲ AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构, 使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

①新节点插入较高左子树的左侧—左左:右单旋

/*
上图在插入前,AVL树是平衡的,新节点插入到8的左子树(注意:此处不是左孩子)中,8左
子树增加
了一层,导致以34为根的二叉树不平衡,要让34平衡,只能将34左子树的高度减少一层,右子
树增加一层,
即将左子树往上提,这样34转下来,因为34比8大,只能将其放在8的右子树,而如果8有
右子树,右子树根的值一定大于8,小于34,只能将其放在34的左子树,旋转完成后,更新节点
的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:
  1. 8节点的右孩子可能存在,也可能不存在
  2. 34可能是根节点,也可能是子树
     如果是根节点,旋转完成后,要更新根节点
     如果是子树,可能是某个节点的左子树,也可能是右子树
同学们再此处可举一些详细的例子进行画图,考虑各种情况,加深旋转的理解
*/
void _RotateR(PNode pParent)
{
    // pSubL: pParent的左孩子
    // pSubLR: pParent左孩子的右孩子,注意:该
 PNode pSubL = pParent->_pLeft;
 PNode pSubLR = pSubL->_pRight;
    // 旋转完成之后,8的右孩子作为双亲的左孩子
 pParent->_pLeft = pSubLR;
    // 如果8的左孩子的右孩子存在,更新亲双亲
 if(pSubLR)
 pSubLR->_pParent = pParent;
    // 34 作为 8的右孩子
  pSubL->_pRight = pParent;
    // 因为34可能是棵子树,因此在更新其双亲前必须先保存34的双亲
 PNode pPParent = pParent->_pParent;
    // 更新34的双亲
 pParent->_pParent = pSubL;
    // 更新8的双亲
 pSubL->_pParent = pPParent;
    // 如果34是根节点,根新指向根节点的指针
 if(NULL == pPParent)
 {
 _pRoot = pSubL;
 pSubL->_pParent = NULL;
 }
 else
 {
         // 如果34是子树,可能是其双亲的左子树,也可能是右子树
 if(pPParent->_pLeft == pParent)
 pPParent->_pLeft = pSubL;
 else
 pPParent->_pRight = pSubL;
 }
    // 根据调整后的结构更新部分节点的平衡因子
 pParent->_bf = pSubL->_bf = 0;
}

②新节点插入较高右子树的右侧—右右:左单旋

实现方法和右单旋极其类似

void RotateL(node* parent)
    {
      node* subR = parent->_right;
      node* subRL = subR->_left;
      parent->_right = subRL;
      if (subRL)
        subRL->_parent = parent;
      node* ppnode = parent->_parent;
      subR->_left = parent;
      parent->_parent = subR;
      if (ppnode == nullptr)
      {
        _root = subR;
        _root->_parent = nullptr;
      }
      else
      {
        if (ppnode->_left == parent)
        {
          ppnode->_left = subR;
        }
        else
        {
          ppnode->_right = subR;
        }
        subR->_parent = ppnode;
      }
      parent->_bf = subR->_bf = 0;
    }

③新节点插入较高左子树的右侧—左右:先左单旋再右单旋

将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再 考虑平衡因子的更新。

void RotateLR(node* parent)
    {
      node* subL = parent->_left;
      node* subLR = subL->_right;
      int bf = subLR->_bf;
      RotateL(parent->_left);
      RotateR(parent);
      //以下更新节点的平衡因子的情况需要通过一个一个画图去分析
      if (bf == 1)
      {
        parent->_bf = 0;
        subLR->_bf = 0;
        subL->_bf = -1;
      }
      else if (bf == -1)
      {
        parent->_bf = 1;
        subLR->_bf = 0;
        subL->_bf = 0;
      }
      else if (bf == 0)
      {
        parent->_bf = 0;
        subLR->_bf = 0;
        subL->_bf = 0;
      }
      else
      {
        assert(false);
      }
    }

④新节点插入较高右子树的左侧—右左:先右单旋再左单旋

void RotateRL(node* parent)
  {
      node* subR = parent->_right;
      node* subRL = subR->_left;
      int bf = subRL->_bf;
      RotateR(parent->_right);
      RotateL(parent);
      //以下更新节点的平衡因子的情况需要通过一个一个画图去分析
      if (bf == 1)
      {
        parent->_bf = -1;
        subRL->_bf = 0;
        subR->_bf = 0;
      }
      else if (bf == -1)
      {
        parent->_bf = 0;
        subRL->_bf = 0;
        subR->_bf = 1;
      }
      else if (bf == 0)
      {
        parent->_bf = 0;
        subRL->_bf = 0;
        subR->_bf = 0;
      }
      else
      {
        assert(false);
      }
    }

Ⅲ. AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

①验证其为二叉搜索树

如果中序遍历可得到一个有序的序列,就说明为二叉搜索树

②验证其为平衡树

  • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确
int _Height(PNode pRoot);
bool _IsBalanceTree(PNode pRoot)
{
 // 空树也是AVL树
 if (nullptr == pRoot) return true;
 // 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
 int leftHeight = _Height(pRoot->_pLeft);
 int rightHeight = _Height(pRoot->_pRight);
 int diff = rightHeight - leftHeight;
 // 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
 // pRoot平衡因子的绝对值超过1,则一定不是AVL树
 if (diff != pRoot->_bf || (diff > 1 || diff < -1))
 return false;
 // pRoot的左和右如果都是AVL树,则该树一定是AVL树
 return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot-
>_pRight);
 }

③验证用例

请同学们结合上述代码按照以下的数据次序,自己动手画AVL树的创建过程,验证代码 是否有漏洞。

  • 常规场景1
    {16, 3, 7, 11, 9, 26, 18, 14, 15}
  • 特殊场景2
    {4, 2, 6, 1, 3, 5, 15, 7, 16, 14}

Ⅳ.AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这 样可以保证查询时高效的时间复杂度,即l o g 2 ( N ) log_2 (N)log2(N)。但是如果要对AVL树做一些结构修改的操 作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时, 有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数 据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

[什么是AVL树][https://zhuanlan.zhihu.com/p/56066942]

到这本篇博客的内容就到此结束了。
如果觉得本篇博客内容对你有所帮助的话,可以点赞,收藏,顺便关注一下!
如果文章内容有错误,欢迎在评论区指正

相关文章
|
12天前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
128 75
|
12天前
|
存储 C++
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
【数据结构——树】哈夫曼树(头歌实践教学平台习题)【合集】目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:任务描述 本关任务:编写一个程序构建哈夫曼树和生成哈夫曼编码。 相关知识 为了完成本关任务,你需要掌握: 1.如何构建哈夫曼树, 2.如何生成哈夫曼编码。 测试说明 平台会对你编写的代码进行测试: 测试输入: 1192677541518462450242195190181174157138124123 (用户分别输入所列单词的频度) 预
49 14
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
|
12天前
|
存储 人工智能 算法
【C++数据结构——图】最短路径(头歌教学实验平台习题) 【合集】
任务描述 本关任务:编写一个程序,利用Dijkstra算法,实现带权有向图的最短路径。 相关知识 为了完成本关任务,你需要掌握:Dijkst本关任务:编写一个程序,利用Dijkstra算法,实现带权有向图的最短路径。为了完成本关任务,你需要掌握:Dijkstra算法。带权有向图:该图对应的二维数组如下所示:Dijkstra算法:Dijkstra算法是指给定一个带权有向图G与源点v,求从v到G中其他顶点的最短路径。Dijkstra算法的具体步骤如下:(1)初始时,S只包含源点,即S={v},v的距离为0。
44 15
|
12天前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
36 12
|
12天前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
37 10
|
2月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
284 9
|
2月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
44 1
|
12天前
|
存储 C++ 索引
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
【数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】初始化队列、销毁队列、判断队列是否为空、进队列、出队列等。本关任务:编写一个程序实现环形队列的基本运算。(6)出队列序列:yzopq2*(5)依次进队列元素:opq2*(6)出队列序列:bcdef。(2)依次进队列元素:abc。(5)依次进队列元素:def。(2)依次进队列元素:xyz。开始你的任务吧,祝你成功!(4)出队一个元素a。(4)出队一个元素x。
34 13
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
|
12天前
|
存储 C语言 C++
【C++数据结构——栈与队列】链栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现链栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储整数,最大
35 9
|
12天前
|
C++
【C++数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】
【数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】(1)遇到左括号:进栈Push()(2)遇到右括号:若栈顶元素为左括号,则出栈Pop();否则返回false。(3)当遍历表达式结束,且栈为空时,则返回true,否则返回false。本关任务:编写一个程序利用栈判断左、右圆括号是否配对。为了完成本关任务,你需要掌握:栈对括号的处理。(1)遇到左括号:进栈Push()开始你的任务吧,祝你成功!测试输入:(()))
29 7