redis淘汰策略

简介: redis淘汰策略

背景

Redis 之所以有淘汰策略,是因为 Redis 是基于内存的高性能键值存储系统,它将数据全部加载到内存中进行读写操作。但是,内存资源是有限的,当 Redis 使用的内存接近或超过系统可用内存时,就需要通过一些策略来释放内存空间。

1)键过期:通过expire / pexpire 设置key的生存时间。当key的生存周期达到时,将对应的key-value删除。

# 设置 key 的过期时间
expire key seconds
pexpire key milliseconds
# 查看 key 的过期时间
ttl key
pttl key

2)键的空闲时间(空转时长):redis每次操作value时,会记录操作的时间戳和统计对key-value的操作次数。value 的类型有多种,底层由 redisObject 实现,这种通用的数据结构可以存储不同类型的 value。

typedef struct redisObject {
    unsigned type:4;        // 对象类型:string, hash, list, set
    unsigned encoding:4;    // 编码方式
    unsigned lru:LRU_BITS;  // lru:24位,最近一次访问时间,单位秒,
                            // lfu: 高16位,最近一次访问时间;低8位,逻辑访问次数
    int refcount;           // 引用计数,计数为 0,对象无人引用,可以回收
    void *ptr;              // 数据指针,指向对象内容
} robj;

lru字段用于记录操作value的时间,也会统计对key-value操作了多少次。可以使用object idletime key获取指定键的空闲时间。空闲时间指的是自上次对该键进行读取或写入操作以来所经过的时间。

# 对象空转时长
object idletime key

3)配置 redis.conf有两个参数配置淘汰策略,maxmemory和maxmemory-policy。 maxmemory限定redis可以使用的最大内存(单位是字节 ),一般设置为当前系统可用内存的一半; maxmemory-policy用于制定淘汰策略。

# redis.conf
maxmemory <bytes>
maxmemory-policy noeviction

淘汰策略

针对过期key

  • volatile-lru:从设置了过期时间的键中,选择最近最少使用(Least Recently Used)(最长时间没有使用)的键进行删除。这种模式下, lru整个字段都用于记录时间。
  • volatile-lfu:从设置了过期时间的键中,选择最少使用次数的键进行删除。这种模式下 记录操作的时间和统计对key-value操作次数(8位统计次数,16位记录时间)。
  • volatile-ttl:从设置了过期时间的键中,选择剩余时间最短(最近就要过期)的键进行删除。这种模式下,记录操作的时间和统计对key-value操作次数(8位统计次数,16位记录时间)。
  • volatile-random:从设置了过期时间的键中,随机选择一个进行删除。ttl/pttl指令可以查询key还有多长时间到期。

针对所有key

  • allkeys-lru:从所有的键中,选择最近最少使用的键进行删除。无论键是否设置了过期时间。
  • allkeys-lfu,从所有的键中,选择最少使用次数的键进行删除。无论键是否设置了过期时间。
  • allkeys-random:从所有的键中,随机选择一个进行删除。无论键是否设置了过期时间。

禁止淘汰

noeviction:默认是禁止淘汰,如果数据达到了最大内存限制,在向redis中写入数据时会报错。

目录
相关文章
|
4月前
|
存储 缓存 NoSQL
工作 10 年!Redis 内存淘汰策略 LRU 和传统 LRU 差异,还傻傻分不清
小富带你深入解析Redis内存淘汰机制:LRU与LFU算法原理、实现方式及核心区别。揭秘Redis为何采用“近似LRU”,LFU如何解决频率老化问题,并结合实际场景教你如何选择合适策略,提升缓存命中率。
550 3
|
5月前
|
存储 缓存 人工智能
Redis六大常见命令详解:从set/get到过期策略的全方位解析
本文将通过结构化学习路径,帮助读者实现从命令语法掌握到工程化实践落地的能力跃迁,系统性提升 Redis 技术栈的应用水平。
|
5月前
|
存储 NoSQL 算法
应对Redis中的并发冲突:有效解决策略
以上策略各有优劣:乐观锁和悲观锁控制得当时可以很好地解决并发问题;发布/订阅模式提高了实时响应能力;Lua脚本和Redis事务保证了命令序列的原子性;分布式锁适合跨节点的并发控制;限流措施和持久化配置从系统设计层面减少并发风险;数据分片通过架构上的优化减轻单个Redis节点的负担。正确选择适合自己应用场景的策略,是解决Redis并发冲突的关键。
322 0
|
7月前
|
存储 监控 NoSQL
流量洪峰应对术:Redis持久化策略与内存压测避坑指南
本文深入解析Redis持久化策略与内存优化技巧,涵盖RDB快照机制、AOF重写原理及混合持久化实践。通过实测数据揭示bgsave内存翻倍风险、Hash结构内存节省方案,并提供高并发场景下的主从复制冲突解决策略。结合压测工具链构建与故障恢复演练,总结出生产环境最佳实践清单。
262 9
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供了 8 种数据淘汰策略,分为淘汰易失数据和淘汰全库数据两大类。易失数据淘汰策略包括:volatile-lru、volatile-lfu、volatile-ttl 和 volatile-random;全库数据淘汰策略包括:allkeys-lru、allkeys-lfu 和 allkeys-random。此外,还有 no-eviction 策略,禁止驱逐数据,当内存不足时新写入操作会报错。
1084 16
|
7月前
|
消息中间件 监控 NoSQL
利用RabbitMQ与Redis实现消息的延迟传递的策略
这个系统就如同一个无懈可击的邮局,无论天气如何变换,它都能确保每一封信准时送达。通过巧妙地运用RabbitMQ的DLX和Redis的Sorted Sets,我们搭建了一座桥梁,让即时和延迟消息的传递高效且无缝对接。
137 3
|
10月前
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供 8 种数据淘汰策略: 淘汰易失数据(具有过期时间的数据) 1. volatile-lru(least recently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰 2. volatile-lfu(least frequently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰 3. volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰 4. volatile-random:从已设置过期
|
10月前
|
NoSQL Redis
Redis的数据持久化策略有哪些 ?
Redis 提供了两种方式,实现数据的持久化到硬盘。 1. RDB 持久化(全量),是指在指定的时间间隔内将内存中的数据集快照写入磁盘。 2. AOF持久化(增量),以日志的形式记录服务器所处理的每一个写、删除操作 RDB和AOF一起使用, 在Redis4.0版本支持混合持久化方式 ( 设置 aof-use-rdb-preamble yes )
|
10月前
|
存储 NoSQL Redis
Redis的数据过期策略有哪些 ?
1. 惰性删除 :只会在取出 key 的时候才对数据进行过期检查。这样对 CPU 最友好,但是可能会造成太多过期 key 没有被删除。数据到达过期时间,不做处理。等下次访问该数据时,我们需要判断 a. 如果未过期,返回数据 b. 发现已过期,删除,返回nil 2. 定期删除 : 每隔一段时间抽取一批 key 执行删除过期 key 操作。并且,Redis 底层会通过限制删除操作执行的时长和频率来减少删除操作对 CPU 时间的影响。默认情况下 Redis 定期检查的频率是每秒扫描 10 次,用于定期清除过期键。当然此值还可以通过配置文件进行设置,在 redis.conf 中修改配置“hz”
|
NoSQL 算法 Redis
redis内存淘汰策略
Redis支持8种内存淘汰策略,包括noeviction、volatile-ttl、allkeys-random、volatile-random、allkeys-lru、volatile-lru、allkeys-lfu和volatile-lfu。这些策略分别针对所有键或仅设置TTL的键,采用随机、LRU(最近最久未使用)或LFU(最少频率使用)等算法进行淘汰。
365 5