【redis】数据量庞大时的应对策略

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 【redis】数据量庞大时的应对策略

为什么数据量多了主机会崩

一台主机的硬件资源是有上限的,包括但不限于一下几种:

  • CPU
  • 内存
  • 硬盘
  • 网络

  • 服务器每次收到一个请求,都是需要消耗上述的一些资源的~~
    如果同一时刻处理的请求多了,此时就可能会导致某个硬件资源不够用了,无论是那个方面不够用了,都可能会导致服务器处理请求的时间变长,甚至于处理出错

如果我们真的遇到了这样的服务器不够用的场景,我们可以:

  1. 开源
  • 简单粗暴,直接增加更多的硬件资源(什么不够补什么)
  • 不过一个主机上面能增加的硬件资源也是有限的,取决于主板的扩展能力
  1. 节流(软件上优化)
  • 针对程序进行优化,优化代码(各凭本事)
  • 通过性能测试,找到是哪个环节出现了瓶颈,再对症下药
  • 操作起来很难!对程序员的水平要求比较高

分布式系统

当一台主机扩展到极限了,但是还不够,就只能引入多台主机了

但不是说买来的新的机器直接就可以解决问题,也需要软件上做出对应的调整和适配。当引入多台主机了,我们的系统就可以称为“分布式系统”了

引入分布式系统万不得已的,系统的复杂程度会大大大提高(指数增长),这样出现 bug 的概率就越高、加班的概率就越大、丢失年终奖的概率也随之提高

应用数据分离架构

  • 之前应用服务和数据库服务部署在一个服务器上,意味着这一份硬件资源要给两人用
  • 现在各用各的,还可以针对两种服务器的特点,配置不同的主机
  • 应用服务器,里面可能包含很多的业务逻辑,可能会很吃 CPU 和内存。就给其配置 CPU 配置高、内存大的主机
  • 存储服务器,最主要的就是需要更大的硬盘空间、更快的数据访问速度。就给其配置更大硬盘的服务器,甚至还可以上 SSD 硬盘(固态硬盘)

分离了之后,能一定程度上的解决硬件资源不够用的问题。但是如果随着请求量进一步增加、数据量进一步增加,我们就需要进一步地增加硬件资源、调整服务器的结构

应用服务集群架构

引入更多的应用服务器节点


应用服务器可能会比较迟 CPU 和内存。如果把 CPU 和内存吃没了,此时应用服务器就顶不住了

此时引入更多的应用服务器,就可以有效解决上述问题

  • 相当于是有了更多的 CPU 和硬件资源

负载均衡器

  • 用户的请求先到“负载均衡器/网关服务器”(单独的服务器)这里,然后由其对这个请求进行分发
  • 现在我们有多个应用服务器了(图中是俩,实际上可能是多个),每个应用服务器都是能单独完成整个业务逻辑的,
  • 此时引入多个应用服务器之后,就可以让每个应用服务器承担整体请求中的一部分
  • 负载均衡器就像公司的一个组的领导一样,要负责管理,负责把任务分配给每个组员

假设有 1w 个用户请求,有 2 个应用服务器,此时按照负载均衡的方式,就可以让每个应用服务器承担 5k 的访问量

[!quote] 负载均衡器

  • 负载均衡器就像公司的一个组的领导一样,要负责管理,负责把任务分配给每个组员
  • 其内部有很多的“负载均衡”具体的算法

此时应用服务器的压力变小了,但“负载均衡器”不是一人承担了所有请求吗?他不会崩吗?

  • 负载均衡器对于请求量的承担能力要远远超过应用服务器
  • 负载均衡器是领导,他的职责是分配工作
  • 应用服务器是组员,他的职责是执行任务
  • 执行一个任务所花的时间远远超出分配一个工作所花的时间,所以负载均衡器消耗的硬件资源是很少的

当请求量大到负载均衡器也扛不住的时候,只需要引入更多的负载均衡器(引入多个机房)就可以了


如上面讨论,增加应用服务器,确实能够处理更高的请求量,但是随之存储服务器要承担的请求量也就更多了,此时仍是两个办法:

  1. 开源,引入更多的机器,数据库读写分离
  2. 节流,门槛高

数据库读写分离

  • 在这个图里可以看到,存储服务器变成两台了(实际上可能有更多台)
  • 主数据库(master),只负责
  • 从数据库(slave),只负责。是主数据库的“跟班”,这个数据库中的数据要从主数据库中进行同步
  • 应用服务器需要,就从“从数据库”中去读。需要,就从“主数据库”中去写

这样就把每一台机器的压力降低了。在实际的应用场景中,读的频率是比写要高的

主服务器一般是一个,从服务器可以有多个(一主多从),同时从数据库通过负载均衡的方式,让应用服务器进行访问

引入缓存

冷热分离架构

数据库天然有个问题——响应速度比较慢。所以将数据区分“冷热”,热点数据放到缓存中,缓存的访问速度往往要比数据库要快很多

  • 缓存中只是放一小部分热点数据(会频繁被访问到的数据)
  • 数据库里面存储的仍然是全量数据,只是相比之下热点数据会被放在缓存
  • 二八原则,20% 的数据能支持 80% 的访问量,更极端的情况能到一九

后续应用服务器在读取数据的时候,就可以先读缓存,如果这个数据在缓存中存在,就不需要读数据库中的数据了;如果不存在,就再去读数据库。由于二八原则,所以大部分的访问都可以直接在缓存中找到答案

  • 这样数据库的压力又进一步降低了
  • 同时缓存读的又快,又节约了时间
  • 此时就相当与缓存服务器在帮助数据库服务器负重前行

分库

引入分布式系统有两个方面:

  1. 应对更高的请求量(并发量)
  2. 应对更大的数据量

虽然一个服务器存储的数据量可以达到几十个 TB,但是仍然会存在一台主机存不下数据的情况。当出现这样的情况时,我们就需要多台主机来存储

  • 针对数据库进行进一步拆分==>分库分表,本来一个数据库服务器,这个数据库服务器上有多个数据库(指的是逻辑上的数据集合,create database 创建的那个东西)
  • 现在就可以引入多个数据库服务器,每个数据库服务器存储一个或者一部分数据库
  • 将不同的表分到不同的机器上

分表

如果某个表非常大,大到一台主机存不下,也可以针对表进行拆分

  • 将一张表拆成五张表,用五个服务器去存储,每个服务器都存储原表中的一部分
  • 这样的话我们引入的存储空间就更多了

具体分库分表如何实践,还是要结合实际的业务场景来开展

微服务

是什么

上面已经演化出了一个比较复杂的分布式系统,可以处理更多的请求,同时可以存储更多的数据。但是这样的演化远远不是终点。在实际工作中还会对应用服务器做进一步的拆分

  • 当应用服务器中要做的功能太多、太复杂,就需要将应用服务器拆成更多的部分
  • 每一部分只负责其中的一小部分功能

    之前应用服务器,一个服务器里面做了很多的业务,这就可能会导致这一个服务器的代码变得越来越复杂。为了更方便于代码的维护,就可以把这样的一个复杂的服务器,拆分成更多单一的,但是更小的服务器==>微服务
  • 服务器的种类和数量就增加了
  • 每组服务器都有各自的存储集群和缓存模块

注意:微服务本质上是在解决“人”的问题

当应用服务器复杂了,势必就需要更多的人来维护,当人变多了,就需要配套的管理,把这些人组织好

  • 划分组织结构,分成多个组
  • 每个组分配领导进行管理
  • 分成多个组就需要进分工

代价

引入微服务,解决了人的问题,但是付出的代价:

  1. 整个系统的性能会下降

原本用户、商品、交易这些模块都是直接在进程内相互调用的。而现在需要通过网络,进行跨主机通信

  • 网络通信比进程内调用慢太多太多了
  • 访问最快的是 CPU、其次内存、才到硬盘,硬盘本身就比内存慢很多了

拆出更多的服务,多个功能之间要更依赖网络通信,而网络通信的速度可能比硬盘还要慢,这样系统的性能就会下降很多

  • 想要保证性能不下降太多,只能引入更多的机器,更多的硬件资源(充钱,大厂不差钱)

幸运的是,由于硬件技术的发展,网卡现在有“万兆网卡”,读写速度已经能超过硬盘读写了,这样才导致微服务的通信操作不至于“太慢”

  • 不过就一个字——
  • 万兆网卡还需要配上万兆路由器、万兆交换机,甚至是能支持万兆带宽的网线…
    所以,这些就不是一些中小公司折腾的起的,还是只有一些大厂能玩得转
  1. 系统复杂程度提高,可用性受到影响

服务器更多了,出现问题的概率就更大了,这就需要一系列的手段,来保证系统的可用性

  • 更丰富的监控报警机制
  • 配套的运维人员

优势

  1. 解决了人的问题

  1. 使用微服务,可以更方便于功能的复用

比如电商系统里面的用户模块,可能在很多模块中多需要用到,那我们就将其单独提取出来,给其他模块来调用


  1. 可以给不同的服务进行不同的部署

有的模块对于请求量/数据量处理的不是很多,我们就给它少部署一点机器;有些重点的、负载量大的模块,我们就可以配置更好的机器

小结

  1. 单机架构应用程序+数据库服务器
  2. 数据库和应用分离
    应用程序和数据库服务器,分别放到不同主机上部署
  3. 引入负载均衡
    应用服务器成为集群,这些应用服务器之间,通过负载均衡器,把请求比较均匀的分发给集群中的每个应用服务器
    当集群中的某一个主机挂了,其他的主机仍然可以承担服务,变向提高了整个系统的可用性
  4. 引入读写分离(数据库主从结构)
    以一个数据库作为主节点,其他 N 个数据库节点作为从节点,主节点负责写数据,从节点负责读数据
    主机诶点需要把修改过的数据同步给从节点
  5. 引入缓存(冷热数据分离)
    二八原则,读缓存。redis 在一个分布式系统中,通常就扮演着缓存的角色
  6. 分库分表(数据库进一步扩展存储空间)
    结合业务场景选择分库还是分表
  7. 微服务(从业务上进一步拆分)
    从业务功能的角度,把应用服务器拆分成更多的功能更单一,更简单,更小的服务器


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
3月前
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供了 8 种数据淘汰策略,分为淘汰易失数据和淘汰全库数据两大类。易失数据淘汰策略包括:volatile-lru、volatile-lfu、volatile-ttl 和 volatile-random;全库数据淘汰策略包括:allkeys-lru、allkeys-lfu 和 allkeys-random。此外,还有 no-eviction 策略,禁止驱逐数据,当内存不足时新写入操作会报错。
256 16
|
2月前
|
缓存 NoSQL Redis
Redis经典问题:数据并发竞争
数据并发竞争是大流量系统(如火车票系统、微博平台)中常见的问题,可能导致用户体验下降甚至系统崩溃。本文介绍了两种解决方案:1) 加写回操作加互斥锁,查询失败快速返回默认值;2) 保持多个缓存备份,减少并发竞争概率。通过实践案例展示,成功提高了系统的稳定性和性能。
|
2月前
|
缓存 监控 NoSQL
Redis经典问题:数据不一致
在使用Redis时,缓存与数据库数据不一致会导致应用异常。主要原因包括缓存更新失败、Rehash异常等。解决方案有:重试机制、缩短缓存时间、优化写入策略、建立监控报警、定期验证一致性、采用缓存分层及数据回滚恢复机制。这些措施可确保数据最终一致性,提升应用稳定性和性能。
|
2月前
|
NoSQL 算法 Redis
redis内存淘汰策略
Redis支持8种内存淘汰策略,包括noeviction、volatile-ttl、allkeys-random、volatile-random、allkeys-lru、volatile-lru、allkeys-lfu和volatile-lfu。这些策略分别针对所有键或仅设置TTL的键,采用随机、LRU(最近最久未使用)或LFU(最少频率使用)等算法进行淘汰。
53 5
|
2月前
|
NoSQL 安全 Redis
redis持久化策略
Redis 提供了两种主要的持久化策略:RDB(Redis DataBase)和AOF(Append Only File)。RDB通过定期快照将内存数据保存为二进制文件,适用于快速备份与恢复,但可能因定期保存导致数据丢失。AOF则通过记录所有写操作来确保数据安全性,适合频繁写入场景,但文件较大且恢复速度较慢。两者结合使用可增强数据持久性和恢复能力,同时Redis还支持复制功能提升数据可用性和容错性。
64 5
|
3月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
在项目中,为了解决Redis与Mysql的数据一致性问题,我们采用了多种策略:对于低一致性要求的数据,不做特别处理;时效性数据通过设置缓存过期时间来减少不一致风险;高一致性但时效性要求不高的数据,利用MQ异步同步确保最终一致性;而对一致性和时效性都有高要求的数据,则采用分布式事务(如Seata TCC模式)来保障。
82 14
|
3月前
|
存储 NoSQL 算法
Redis分片集群中数据是怎么存储和读取的 ?
Redis集群采用哈希槽分区算法,共有16384个哈希槽,每个槽分配到不同的Redis节点上。数据操作时,通过CRC16算法对key计算并取模,确定其所属的槽和对应的节点,从而实现高效的数据存取。
72 13
|
3月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
60 5
|
3月前
|
存储 NoSQL Redis
Redis的数据过期策略有哪些 ?
Redis 采用两种过期键删除策略:惰性删除和定期删除。惰性删除在读取键时检查是否过期并删除,对 CPU 友好但可能积压大量过期键。定期删除则定时抽样检查并删除过期键,对内存更友好。默认每秒扫描 10 次,每次检查 20 个键,若超过 25% 过期则继续检查,单次最大执行时间 25ms。两者结合使用以平衡性能和资源占用。
64 11
|
3月前
|
监控 NoSQL 测试技术
【赵渝强老师】Redis的AOF数据持久化
Redis 是内存数据库,提供数据持久化功能,支持 RDB 和 AOF 两种方式。AOF 以日志形式记录每个写操作,支持定期重写以压缩文件。默认情况下,AOF 功能关闭,需在 `redis.conf` 中启用。通过 `info` 命令可监控 AOF 状态。AOF 重写功能可有效控制文件大小,避免性能下降。