Python 机器学习入门:数据集、数据类型和统计学

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
应用实时监控服务-可观测链路OpenTelemetry版,每月50GB免费额度
简介: 机器学习是通过研究数据和统计信息使计算机学习的过程。机器学习是迈向人工智能(AI)的一步。机器学习是一个分析数据并学会预测结果的程序。

机器学习是通过研究数据和统计信息使计算机学习的过程。机器学习是迈向人工智能(AI)的一步。机器学习是一个分析数据并学会预测结果的程序。

数据集

在计算机的思维中,数据集是任何数据的集合。它可以是从数组到完整数据库的任何东西。

数组的示例:

[99,86,87,88,111,86,103,87,94,78,77,85,86]

数据库的示例:

Carname  Color  Age  Speed  AutoPass
BMW  red  5  99  Y
Volvo  black  7  86  Y
VW  gray  8  87  N
VW  white  7  88  Y
Ford  white  2  111  Y
VW  white  17  86  Y
Tesla  red  2  103  Y
BMW  black  9  87  Y
Volvo  gray  4  94  N
Ford  white  11  78  N
Toyota  gray  12  77  N
VW  white  9  85  N
Toyota  blue  6  86  Y

通过查看数组,我们可以猜测平均值可能在80到90之间,我们还能够确定最高值和最低值,但我们还能做什么?

通过查看数据库,我们可以看到最受欢迎的颜色是白色,而最老的车辆为17岁,但如果我们能够通过查看其他值来预测车辆是否具有AutoPass呢?

这就是机器学习的用途!分析数据并预测结果!

在机器学习中,通常需要处理非常大的数据集。在本教程中,我们将尽量让您尽可能容易地理解机器学习的不同概念,并使用易于理解的小型数据集。

数据类型

要分析数据,重要的是要知道我们正在处理的数据类型。

我们可以将数据类型分为三个主要类别:

  • 数值
  • 分类
  • 顺序

数值数据是数字,并且可以分为两个数值类别:

  1. 离散数据 - 限制为整数的数字。示例:汽车经过的数量。
  2. 连续数据 - 有无限值的数字。示例:物品的价格或大小。

分类数据是不能相互比较的值。示例:颜色值或任何是/否值。

顺序数据类似于分类数据,但可以相互比较。示例:学校成绩,其中A好于B等等。

通过了解数据源的数据类型,您将能够知道在分析数据时使用哪种技术。

您将在接下来的章节中了解更多有关统计学和数据分析的内容。

机器学习 - 均值、中位数、众数

在观察一组数字时,我们可以学到什么?

在机器学习(以及数学)中,通常有三个值引起我们的兴趣:

  • 均值 - 平均值
  • 中位数 - 中间值
  • 众数 - 出现最频繁的值

示例:我们已经记录了13辆车的速度:

speed = [99,86,87,88,111,86,103,87,94,78,77,85,86]

这些速度的平均值、中间值和最常见的速度值是多少呢?

均值

均值是平均值。

要计算均值,找到所有值的总和,并将总和除以值的数量:

(99+86+87+88+111+86+103+87+94+78+77+85+86) / 13 = 89.77

NumPy模块有一个用于此目的的方法。了解有关NumPy模块的信息,请查看我们的NumPy教程。

示例:使用NumPy的mean()方法找到平均速度:

import numpy

speed = [99,86,87,88,111,86,103,87,94,78,77,85,86]

x = numpy.mean(speed)

print(x)

中位数

中位数是排列所有值后位于中间的值:

77, 78, 85, 86, 86, 86, 87, 87, 88, 94, 99, 103, 111

在找到中位数之前,需要确保对数字进行排序。

NumPy模块有一个用于此目的的方法:

示例:使用NumPy的median()方法找到中间值:

import numpy

speed = [99,86,87,88,111,86,103,87,94,78,77,85,86]

x = numpy.median(speed)

print(x)

如果中间有两个数字,将这些数字的总和除以2。

77, 78, 85, 86, 86, 86, 87, 87, 94, 98, 99, 103

(86 + 87) / 2 = 86.5

示例:使用NumPy模块:

import numpy

speed = [99,86,87,88,86,103,87,94,78,77,85,86]

x = numpy.median(speed)

print(x)

众数

众数是出现最频繁的值:

99, 86, 87, 88, 111, 86, 103, 87, 94, 78, 77, 85, 86 = 86

SciPy模块有一个用于此目的的方法。了解有关SciPy模块的信息,请查看我们的SciPy教程。

示例:使用SciPy的mode()方法找到出现最频繁的数字:

from scipy import stats

speed = [99,86,87,88,111,86,103,87,94,78,77,85,86]

x = stats.mode(speed)

print(x)

最后

为了方便其他设备和平台的小伙伴观看往期文章:公众号搜索Let us Coding,或者扫描下方二维码,关注公众号,即可获取最新文章。

看完如果觉得有帮助,欢迎点赞、收藏关注
image.png

相关文章
|
5天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
7天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
18 2
|
9天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
24 1
|
9天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
28 1
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
31 2
|
15天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
21 3
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
【Python机器学习】文本特征提取及文本向量化讲解和实战(图文解释 附源码)
【Python机器学习】文本特征提取及文本向量化讲解和实战(图文解释 附源码)
408 0
|
6月前
|
机器学习/深度学习 算法 数据挖掘
【Python机器学习】K-Means对文本聚类和半环形数据聚类实战(附源码和数据集)
【Python机器学习】K-Means对文本聚类和半环形数据聚类实战(附源码和数据集)
184 0
|
1月前
|
机器学习/深度学习 算法 数据挖掘
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧1
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
51 5
|
1月前
|
机器学习/深度学习 数据采集 分布式计算
【Python篇】深入机器学习核心:XGBoost 从入门到实战
【Python篇】深入机器学习核心:XGBoost 从入门到实战
93 3