基于容器平台 ACK 快速搭建 Stable Diffusion(2)

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 基于容器平台 ACK 快速搭建 Stable Diffusion

使用 kubectl 创建

stable-diffusion.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: stable-diffusion
  name: stable-diffusion
  namespace: default
spec:
  replicas: 1
  selector:
    matchLabels:
      app: stable-diffusion
  template:
    metadata:
      labels:
        app: stable-diffusion
    spec:
      containers:
      - args:
        - --listen
        - --skip-torch-cuda-test
        - --no-half
        command:
        - python3
        - launch.py
        image: zibai-registry.cn-hangzhou.cr.aliyuncs.com/gpt/stable-diffusion:v1.cpu
        imagePullPolicy: IfNotPresent
        name: stable-diffusion
        resources:
          requests:
            cpu: "2"
            memory: 2Gi
---
apiVersion: v1
kind: Service
metadata:
  annotations:
    service.beta.kubernetes.io/alibaba-cloud-loadbalancer-address-type: internet
    service.beta.kubernetes.io/alibaba-cloud-loadbalancer-instance-charge-type: PayByCLCU
  name: stable-diffusion
  namespace: default
spec:
  externalTrafficPolicy: Local
  ports:
  - port: 7860
    protocol: TCP
    targetPort: 7860
  selector:
    app: stable-diffusion
  type: LoadBalancer
kubectl apply -f stable-diffusion.yaml

等待 pod ready

📍镜像大小为 12.7GB,内网下载约 10min

# 查看pod状态,等待pod running
kubectl get po |grep stable-diffusion
# 查看CLB IP
kubectl get svc stable-diffusion
NAME               TYPE           CLUSTER-IP      EXTERNAL-IP    PORT(S)          AGE
stable-diffusion   LoadBalancer   192.168.x.x     xx.xx.xx.xxx   7860:32320/TCP   12m

在浏览器中访问上一步获取到的 http://xxx.xxx.xxx.xxx:7860,即可看到如下页面。

Prompt:Black and white photo of a beautiful city

Sampling method:DPM++ SDE

image.png


GPU 版本

前提条件

  • 已创建 Kubernetes 异构集群集群。具体操作,请参见创建托管 GPU 集群[4]

📍需要 GPU 节点,磁盘剩余容量需大于 40G

  • 已通过 kubectl 连接kubernetes集群。具体操作,请参见通过 Kubectl 连接 Kubernetes 集群。

使用 kubectl 创建

stable-diffusion.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: stable-diffusion
  name: stable-diffusion
  namespace: default
spec:
  replicas: 1
  selector:
    matchLabels:
      app: stable-diffusion
  template:
    metadata:
      labels:
        app: stable-diffusion
    spec:
      containers:
      - args:
        - --listen
        command:
        - python3
        - launch.py
        image: zibai-registry.cn-hangzhou.cr.aliyuncs.com/gpt/stable-diffusion:v1.gpu
        imagePullPolicy: IfNotPresent
        name: stable-diffusion
        resources:
          requests:
            cpu: "2"
            memory: 2Gi
          limits:
            nvidia.com/gpu: 1
---
apiVersion: v1
kind: Service
metadata:
  annotations:
    service.beta.kubernetes.io/alibaba-cloud-loadbalancer-address-type: internet
    service.beta.kubernetes.io/alibaba-cloud-loadbalancer-instance-charge-type: PayByCLCU
  name: stable-diffusion
  namespace: default
spec:
  externalTrafficPolicy: Local
  ports:
  - port: 7860
    protocol: TCP
    targetPort: 7860
  selector:
    app: stable-diffusion
  type: LoadBalancer
kubectl apply -f stable-diffusion.yaml

等待 pod ready

📍镜像大小为 15.1GB,内网下载约 15min

# 查看pod状态,等待pod running
kubectl get po |grep stable-diffusion
# 查看CLB IP
kubectl get svc stable-diffusion
NAME               TYPE           CLUSTER-IP      EXTERNAL-IP    PORT(S)          AGE
stable-diffusion   LoadBalancer   192.168.x.x     xx.xx.xx.xxx   7860:32320/TCP   12m

在浏览器中访问上一步获取到的 http://xxx.xxx.xxx.xxx:7860,即可看到如下页面。

Prompt:Black and white photo of a beautiful city

Sampling method:DPM++ SDE

image.png

GPU 版本的图片生成速度明显优于 CPU 版本。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
1月前
|
存储 监控 对象存储
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
针对本地存储和 PVC 这两种容器存储使用方式,我们对 ACK 的容器存储监控功能进行了全新升级。此次更新完善了对集群中不同存储类型的监控能力,不仅对之前已有的监控大盘进行了优化,还针对不同的云存储类型,上线了全新的监控大盘,确保用户能够更好地理解和管理容器业务应用的存储资源。
351 178
|
2月前
|
人工智能 弹性计算 运维
ACK Edge与IDC:高效容器网络通信新突破
本文介绍如何基于ACK Edge以及高效的容器网络插件管理IDC进行容器化。
|
1天前
|
监控 Kubernetes Cloud Native
基于阿里云容器服务Kubernetes版(ACK)的微服务架构设计与实践
本文介绍了如何基于阿里云容器服务Kubernetes版(ACK)设计和实现微服务架构。首先概述了微服务架构的优势与挑战,如模块化、可扩展性及技术多样性。接着详细描述了ACK的核心功能,包括集群管理、应用管理、网络与安全、监控与日志等。在设计基于ACK的微服务架构时,需考虑服务拆分、通信、发现与负载均衡、配置管理、监控与日志以及CI/CD等方面。通过一个电商应用案例,展示了用户服务、商品服务、订单服务和支付服务的具体部署步骤。最后总结了ACK为微服务架构提供的强大支持,帮助应对各种挑战,构建高效可靠的云原生应用。
|
6天前
|
弹性计算 人工智能 资源调度
DeepSeek大解读系列公开课上新!阿里云专家主讲云上智能算力、Kubernetes容器服务、DeepSeek私有化部署
智猩猩「DeepSeek大解读」系列公开课第三期即将开讲,聚焦阿里云弹性计算助力大模型训练与部署。三位专家将分别讲解智能算力支撑、Kubernetes容器服务在AI场景的应用实践、以及DeepSeek一键部署和多渠道应用集成,分享云计算如何赋能大模型发展。欲观看直播,可关注【智猩猩GenAI视频号】预约。 (239字符)
|
1月前
|
存储 运维 Kubernetes
正式开源,Doris Operator 支持高效 Kubernetes 容器化部署方案
飞轮科技推出了 Doris 的 Kubernetes Operator 开源项目(简称:Doris Operator),并捐赠给 Apache 基金会。该工具集成了原生 Kubernetes 资源的复杂管理能力,并融合了 Doris 组件间的分布式协同、用户集群形态的按需定制等经验,为用户提供了一个更简洁、高效、易用的容器化部署方案。
正式开源,Doris Operator 支持高效 Kubernetes 容器化部署方案
|
1月前
|
存储 监控 对象存储
ACK容器监控存储全面更新:让您的应用运行更稳定、更透明
介绍升级之后的ACK容器监控体系,包括各大盘界面展示和概要介绍。
|
2月前
|
存储 Kubernetes 开发者
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
Docker 是一种开源的应用容器引擎,允许开发者将应用程序及其依赖打包成可移植的镜像,并在任何支持 Docker 的平台上运行。其核心概念包括镜像、容器和仓库。镜像是只读的文件系统,容器是镜像的运行实例,仓库用于存储和分发镜像。Kubernetes(k8s)则是容器集群管理系统,提供自动化部署、扩展和维护等功能,支持服务发现、负载均衡、自动伸缩等特性。两者结合使用,可以实现高效的容器化应用管理和运维。Docker 主要用于单主机上的容器管理,而 Kubernetes 则专注于跨多主机的容器编排与调度。尽管 k8s 逐渐减少了对 Docker 作为容器运行时的支持,但 Doc
193 5
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
|
1月前
|
Kubernetes Linux 虚拟化
入门级容器技术解析:Docker和K8s的区别与关系
本文介绍了容器技术的发展历程及其重要组成部分Docker和Kubernetes。从传统物理机到虚拟机,再到容器化,每一步都旨在更高效地利用服务器资源并简化应用部署。容器技术通过隔离环境、减少依赖冲突和提高可移植性,解决了传统部署方式中的诸多问题。Docker作为容器化平台,专注于创建和管理容器;而Kubernetes则是一个强大的容器编排系统,用于自动化部署、扩展和管理容器化应用。两者相辅相成,共同推动了现代云原生应用的快速发展。
249 11
|
2月前
|
人工智能 运维 监控
阿里云ACK容器服务生产级可观测体系建设实践
本文整理自2024云栖大会冯诗淳(花名:行疾)的演讲,介绍了阿里云容器服务团队在生产级可观测体系建设方面的实践。冯诗淳详细阐述了容器化架构带来的挑战及解决方案,强调了可观测性对于构建稳健运维体系的重要性。文中提到,阿里云作为亚洲唯一蝉联全球领导者的容器管理平台,其可观测能力在多项关键评测中表现优异,支持AI、容器网络、存储等多个场景的高级容器可观测能力。此外,还介绍了阿里云容器服务在多云管理、成本优化等方面的最新进展,以及即将推出的ACK AI助手2.0,旨在通过智能引擎和专家诊断经验,简化异常数据查找,缩短故障响应时间。
阿里云ACK容器服务生产级可观测体系建设实践
|
2月前
|
Prometheus Kubernetes 监控
OpenAI故障复盘 - 阿里云容器服务与可观测产品如何保障大规模K8s集群稳定性
聚焦近日OpenAI的大规模K8s集群故障,介绍阿里云容器服务与可观测团队在大规模K8s场景下我们的建设与沉淀。以及分享对类似故障问题的应对方案:包括在K8s和Prometheus的高可用架构设计方面、事前事后的稳定性保障体系方面。