【Python】数据分析:numpy文本数据读取+索引切片

简介: 【Python】数据分析:numpy文本数据读取+索引切片

1-1 数据导入和数组转置

  • np.loadtxt(framme,dtype='dataType',delimmiter='分隔符',skiprows=''(跳过的行数'),usecols=''需要用到的行数',unpack='Ture/Flase(是否转置)':加载文本文件数据
    V4V1P%[LEG[}[H1]5GTZ}85.png

loadtxt参数意义.png

  • numpy数组转置的是4种方法
  • np.loadtxt中的参数unpack值设置为TRUE
  • 使用数组的.T属性进行转置
  • 使用数组的transpose()方法进行转置
  • 使用numpy数组的swapaxes方法

实例如下:

import numpy as np
filepath = './doubantop250.csv'
t1 = np.loadtxt(filepath,usecols=(1,2,3),delimiter=',',dtype='float')
print(t1)
# 转置的四种方式
# first method:Set the value of parameter "unpack" —— True
t2 = np.loadtxt(filepath,usecols=(1,2,3),delimiter=',',dtype='float',unpack=True)
# second method: use the '.T' attributions of array's
t3 = t1.T
print(t3)
# third method: use the method of 'transpose'
t4 = t1.transpose()
print(t4)
# forth method: swapaxes(arguments:axes needed swapped)
t5 = t1.swapaxes(0,1)
print(t5)

运行结果:

({WK8CH9RB5F1}WS27`BTT7.png

运行结果.png

1-2 numpy数组索引与切片

import numpy as np
filename = './doubantop250.csv'
t1 = np.loadtxt(filename,delimiter=',',dtype='float',usecols=(1,2,3))
# print(t1)
# 取行操作
print(t1[0])
print(t1[0,:])
# 取连续的多行
print(t1[3:])
print(t1[3:,:])
# 取不连续的多行
print(t1[[1,3,13,19]])
print(t1[[1,2,4,6],:])
# 取列
print(t1[:,0])
# 取连续的列
print(t1[:,2:])
# 取不连续的列
print(t1[:,[1,2]])
# 取第2-5行,2-3列
# 取多个位置的交叉数据
print(t1[1:5,1:3])
# 取不相邻的位置的数据信息
print(t1[[1,4,6],[0,1,2]])

import numpy as np
filepath = './doubantop250.csv'
t1 = np.loadtxt(filepath,delimiter=',',usecols=(1,2,3))
print(t1<9.5)
t1[t1 < 9.5] = 0
print(t1[:,1])
# if-else操作
np.where(t1>=9.6,10,0)
print(t1)
# clip(m,n)把数组中小于m的替换成m,大于n的替换成n
目录
相关文章
|
18天前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
2月前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
2月前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
2月前
|
数据采集 存储 XML
python实战——使用代理IP批量获取手机类电商数据
本文介绍了如何使用代理IP批量获取华为荣耀Magic7 Pro手机在电商网站的商品数据,包括名称、价格、销量和用户评价等。通过Python实现自动化采集,并存储到本地文件中。使用青果网络的代理IP服务,可以提高数据采集的安全性和效率,确保数据的多样性和准确性。文中详细描述了准备工作、API鉴权、代理授权及获取接口的过程,并提供了代码示例,帮助读者快速上手。手机数据来源为京东(item.jd.com),代理IP资源来自青果网络(qg.net)。
|
6月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
105 2
|
6月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
295 4
|
3月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
161 4
数据分析的 10 个最佳 Python 库
|
6月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
114 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
|
3月前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
数据分析之旅:用Python探索世界
数据分析之旅:用Python探索世界
41 2

热门文章

最新文章