如何在地图上寻找最密集点的位置?

简介: 最近我在工作中遇到了一个小的需求点,大概是需要在地图上展示出一堆点中的点密度最密集的位置。最开始没想到好的方法,就使用了一个非常简单的策略——所有点的坐标求平均值,这个方法大部分的时候好用,因为大部分城市所有点位基本上都是围绕某个中心点向四周发散的。但我们实际在线上使用的时候,遇到了两个特殊的case。

最近我在工作中遇到了一个小的需求点,大概是需要在地图上展示出一堆点中的点密度最密集的位置。最开始没想到好的方法,就使用了一个非常简单的策略——所有点的坐标求平均值,这个方法大部分的时候好用,因为大部分城市所有点位基本上都是围绕某个中心点向四周发散的。但我们实际在线上使用的时候,遇到了两个特殊的case。


 首先就是当点位分布呈现出异形,比如哑铃型数据分布在两头,你们求平均值的方法就会找到中间数据密度最稀疏的地方,就比如我们在成都的数据上遇到的一样,下图中的红色点位就是按平均值求出来的中心点。

image.png

 另外一种异常case就是数据呈现圆周分布的时候,比如北京的数据,北京的中心是故宫,我们不可能会有点位,如果直接求平均值的话,计算出来的中心点就在故宫附近,这里的数据反而是最稀疏的,如下图所示。

image.png

 后来查询资料,了解到核密度这一方法可以解决我们所遇到的问题,经过实验后发现效果还不错,所以在这里分享给大家。 核密度的思路也很简单,就是遍历所有的点位,计算其他点到当前点的核密度总值,然后找出平均密度最大的点。举个简单例子,给定一个点,如果其他某个点距这个点距离近,密度值就高,反之就远,这个点到其他所有点的密度和求平均就是这个点最终的密度值,这里我们可以直接选用距离的倒数来当成核函数,不过这个核函数是线性的,最终结果和我求平均值差异不大。


 优化下思路,如果某个点的距离越远,是不是其带来的密度值应该越小? 前人也是这么想的,于是就有了很多非线性核函数,而我最终使用了高斯核,调整好核函数的带宽后,其他点带来的密度值也会随着距离,以正态分布的方式衰减如下图,举例越远纵轴的坐标值越低,图中的sigma就是我们核函数的里的带宽。

image.png

 接下来看下计算过程和效果,由于我们是Java系统,我的最终实现是用了java调用了simle包,整体代码如下:

private double[] getHotpot(double[][] data) {
  // 创建高斯核
  MercerKernel<double[]> kernel = new GaussianKernel(0.02);
  // 计算所有点的核密度估计
  double[] densities = new double[data.length];
  for (int i = 0; i < data.length; i++) {
    for (int j = 0; j < data.length; j++) {
    densities[i] += kernel.k(data[i], data[j]);
    }
    // 计算平均密度
    densities[i] /= data.length;
  }
  // 找出密度最大的点
  int maxDensityIndex = 0;
  for (int i = 1; i < densities.length; i++) {
    if (densities[i] > densities[maxDensityIndex]) {
    maxDensityIndex = i;
    }
  }
  return data[maxDensityIndex];
  }


 这里我带宽(高斯核中的sigma)用了0.02,这个也是多次调试后的结果,如果过大会导致算出来的密度值更接近于全局平均值,过小的话会出现几个点集中在一起,但周围没有其他点的情况,我们还是拿上面两个异常的case看下核密度方法的效果。 首先就是成都哑铃型的数据。

image.png

再来就是北京的环形数据

image.png

 上面的图中,我使用了python中的sklearn来实现核密度,使用了folium来绘制地图,完整的代码也贴出来供大家参考。


# -*- coding: utf-8 -*-
import folium
import pandas as pd
from sklearn.neighbors import KernelDensity
import numpy as np
def getCenterPoint(sites):
    points = sites[['latitude', 'longitude']].values
    weights = sites['score'].values
    # 实例化KernelDensity对象
    kde = KernelDensity(kernel='gaussian', bandwidth=0.02)
    # 对数据进行拟合
    kde.fit(points) 
    # 使用KDE模型评估每个点的密度
    log_densities = kde.score_samples(points)
    # 密度最高的点是评估密度最高(即,log_densities值最大)的点
    highest_density_point = points[np.argmax(log_densities)]
    print(highest_density_point.tolist())
    return highest_density_point.tolist()
# 创建一个以给定经纬度为中心的地图,初始缩放级别设为14
m = folium.Map(zoom_start=14)
for i, s in data.iterrows():
    # 在地图上添加一个点标记
    folium.Marker(
        location=[s['latitude'], s['longitude']],  # 经纬度
        popup=s['resblock'], 
    ).add_to(m)
# 保存为html文件
centerPoint = getCenterPoint(cityDf)
folium.Marker(
    location=centerPoint,  # 经纬度
    popup='中心点',  # 弹出内容
    radius=50,
    icon=folium.Icon(color="red", icon="info-sign")
).add_to(m)
m.location = centerPoint
m.save('map.html')
目录
相关文章
|
6月前
uniApp获取当前位置经纬度
uniApp获取当前位置经纬度
346 0
|
1月前
ThreeJs通过射线获取自己的点击位置坐标
这篇文章详细说明了如何使用Three.js来绘制线条,包括创建线几何体、设置材质以及将线条添加到3D场景中的具体步骤。
98 1
ThreeJs通过射线获取自己的点击位置坐标
|
小程序 API
小程序在获取当前位置信息在地图上显示
小程序在获取当前位置信息在地图上显示
169 0
|
定位技术 C# Windows
C#编程学习(05):使用webbroswer控件显示地图并标注点位坐标
C#编程学习(05):使用webbroswer控件显示地图并标注点位坐标
|
编解码 前端开发 PHP
悬浮坐标解决方案:如何在图片获取xy鼠标位置和增加标注信息
悬浮坐标解决方案:如何在图片获取xy鼠标位置和增加标注信息
160 0
|
定位技术
echarts. registerMap选项specialAreas将地图中的部分区域缩放到合适的位置,可以使得整个地图的显示更加好看
echarts. registerMap选项specialAreas将地图中的部分区域缩放到合适的位置,可以使得整个地图的显示更加好看
140 0
|
定位技术 API
百度地图和腾讯地图开发经纬度的位置是互换的
百度地图和腾讯地图开发经纬度的位置是互换的
481 0
|
小程序 定位技术
小程序地图转百度地图坐标
小程序地图转百度地图坐标
156 0
|
数据采集 Ubuntu 应用服务中间件
地图瓦片数据的多种利用形式以及瓦片数据的浏览显示
地图瓦片数据的多种利用形式以及瓦片数据的浏览显示
354 0
地图瓦片数据的多种利用形式以及瓦片数据的浏览显示
|
定位技术
使用地图显示我的位置
使用地图显示我的位置
103 0