数据抽样技术全面概述

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 抽样是研究和数据收集中不可或缺的方法,能够从更大数据中获得有意义的见解并做出明智的决定的子集。

抽样是研究和数据收集中不可或缺的方法,能够从更大数据中获得有意义的见解并做出明智的决定的子集。不同的研究领域采用了不同的抽样技术,每种技术都有其独特的优点和局限性。本文将深入探讨了最常见的抽样技术,包括随机抽样、分层抽样、系统抽样、聚类抽样和便利抽样,并重点介绍了它们的应用和注意事项。

为了介绍我们先生成一些简单的数据:

 import numpy as np
 import matplotlib.pyplot as plt

 # Create a population with known characteristics for demonstration purposes
 population_size = 1000
 population_mean = 50
 population_std = 10
 population = np.random.normal(population_mean, population_std, population_size)

随机抽样

随机抽样通常被认为是抽样技术的黄金标准。在这种方法中,总体中的每个元素都有相同的被选中的机会。随机抽样最大限度地减少了偏差,并确保样本准确地代表了总体,使其成为研究人员追求普遍性的首选。它可以通过简单的随机抽样或使用随机数生成器来实现。

 sample_size = 100
 random_sample = np.random.choice(population, sample_size)

分层抽样

分层抽样根据年龄、性别或收入等特定特征,将数据划分为相互排斥的子群体或阶层。在每一层内,采用随机抽样的方法选择样本。这种方法确保了每个子组的代表性,使其适用于研究人员希望在不同人口群体之间进行精确比较的情况。但是当数据没有明确划分分层时,它可能是计算密集型和具有挑战性的。

 # For this example, we assume two strata - low and high income individuals
 strata_low_income = population[population < 45]
 strata_high_income = population[population >= 45]
 sample_size_low_income = 20
 sample_size_high_income = 80
 stratified_sample = np.concatenate([np.random.choice(strata_low_income, sample_size_low_income), np.random.choice(strata_high_income, sample_size_high_income)])

系统抽样

系统抽样包括从总体列表中选择每n个元素。这种方法简单有效。但是如果在总体列表中存在潜在的模式,则可能导致有偏差的结果。在处理随机抽样可能不切实际的大量数据时,它特别有用。

 k = population_size // sample_size  # Interval
 systematic_sample = population[::k]

整群抽样

整群抽样(Cluster sampling)通常根据边界将数据分成若干组(一般为地域分布)。研究人员随机选择一些群体,并从这些群体中的所有个体收集数据。该技术具有成本效益,适用于种群分布广泛的情况。如果集群不能代表整个数据,它可能会引入偏差。

 # Create clusters (e.g., based on geographical regions)
 cluster_size = 100
 num_clusters = population_size // cluster_size
 clusters = [population[i:i + cluster_size] for i in range(0, len(population), cluster_size)]

 # Randomly select some individuals from the clusters
 sample_cluster_sizes = [sample_size // num_clusters] * num_clusters
 cluster_sample = np.concatenate([np.random.choice(cluster, size, replace=False) for cluster, size in zip(clusters, sample_cluster_sizes)])

方便抽样

便利性抽样(Convenience sampling),顾名思义就是选择那些容易接近或愿意参与的人。它是所有抽样方法中最不严格的,通常用于初步研究或在预算有限和时间有限的情况下进行调查。这可能会导致显著的偏差,因为参与者可能不能代表更广泛的人群。

 # For convenience sampling, we'll randomly select individuals from the population
 convenience_sample = np.random.choice(population, sample_size)

结果对比

这段代码创建了直方图来可视化得到的样本。

 # Create histograms to visualize the results
 plt.figure(figsize=(15, 10))

 # Random Sampling Plot
 plt.subplot(231)
 plt.hist(random_sample, bins=20, color='b', alpha=0.7)
 plt.title('Random Sampling')

 # Stratified Sampling Plot
 plt.subplot(232)
 plt.hist(stratified_sample, bins=20, color='g', alpha=0.7)
 plt.title('Stratified Sampling')

 # Systematic Sampling Plot
 plt.subplot(233)
 plt.hist(systematic_sample, bins=20, color='r', alpha=0.7)
 plt.title('Systematic Sampling')

 # Cluster Sampling Plot
 plt.subplot(234)
 plt.hist(cluster_sample, bins=20, color='y', alpha=0.7)
 plt.title('Cluster Sampling')

 # Convenience Sampling Plot
 plt.subplot(235)
 plt.hist(convenience_sample, bins=20, color='c', alpha=0.7)
 plt.title('Convenience Sampling')

 plt.tight_layout()
 plt.show()

总结

抽样是研究的一个重要组成部分,它使研究人员不必检查每一个单独的因素就能得出关于数据总体的结论。每种抽样技术都有其优点和缺点,因此在选择最合适的方法之前,必须仔细考虑他们的研究目标、可用资源和数据特征。

https://avoid.overfit.cn/post/d3debc422d5f4275b7d353a13a8cd7c3

作者:Everton Gomede

目录
相关文章
|
算法 C语言
C语言的伪代码结构
C语言的伪代码结构
265 1
|
存储 人工智能 算法
【五子棋实战】第2章 博弈树负值极大alpha-beta剪枝算法(二)
  博弈树(Game Tree)是博弈论中的一个概念,用于表示博弈过程中的各种可能走法和对应的结果。它是树结构,树的每个节点表示游戏的一个状态,每个节点的子节点表示在该状态下可能的下一步行动。
431 0
|
机器学习/深度学习 数据采集 人工智能
动手实践:从零开始训练AI模型的全面指南
【7月更文第14天】随着人工智能技术的飞速发展,训练AI模型已成为科研、工程乃至创业领域的热门技能。本文旨在为初学者提供一个清晰、实用的指南,带领大家从零开始,了解并实践如何训练一个人工智能模型。我们将以一个简单的线性回归任务为例,逐步深入,探讨数据预处理、模型构建、训练过程及评估方法,最后展示如何使用Python和深度学习库PyTorch实现这一过程。
6739 0
|
11月前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
683 1
|
12月前
|
运维 监控 安全
连锁药店网络优化策略:一站式融合方案提升竞争力
在数字化浪潮下,线上药店通过技术创新和线上线下融合,正重塑购药体验,提供24小时服务和医保结算便利。面对激烈竞争,连锁药店和中小药店纷纷通过优化网络架构、提升服务质量和加强合规管理来增强竞争力,实现高效、安全的数字化转型。
|
存储 关系型数据库 MySQL
MySQL为何偏爱B+树而非跳表?
【8月更文挑战第9天】在数据库的世界里,索引是提升查询效率的关键。而在MySQL这样的关系型数据库管理系统中,B+树作为索引结构的首选,其背后的原因值得我们深入探讨。本文将从技术角度解析,为何MySQL选择B+树而非跳表作为其索引结构的核心。
553 6
|
存储 安全 API
PicGo配置阿里云oss
PicGo配置阿里云oss
474 0
|
存储 监控 Serverless
函数计算操作报错合集之实例请求Header里面带 "xweb_xhr: 1" 就出现超时,该如何解决
在使用函数计算服务(如阿里云函数计算)时,用户可能会遇到多种错误场景。以下是一些常见的操作报错及其可能的原因和解决方法,包括但不限于:1. 函数部署失败、2. 函数执行超时、3. 资源不足错误、4. 权限与访问错误、5. 依赖问题、6. 网络配置错误、7. 触发器配置错误、8. 日志与监控问题。
199 0
|
存储 前端开发 API
基于SpringBoot+Vue的智能在线考试系统的设计与实现
基于SpringBoot+Vue的智能在线考试系统的设计与实现
552 0