57 Hive案例(数据ETL)

简介: 57 Hive案例(数据ETL)
需求

对web点击流日志基础数据表进行etl(按照仓库模型设计)

按各时间维度统计来源域名top10

已有数据表 “t_orgin_weblog” :

col_name data_type comment
valid string
remote_addr string
remote_user string
time_local string
request string
status string
body_bytes_sent string
http_referer string
http_user_agent string
数据示例
| true|1.162.203.134| - | 18/Sep/2013:13:47:35| /images/my.jpg                        | 200| 19939 | "http://www.angularjs.cn/A0d9"                      | "Mozilla/5.0 (Windows   |
| true|1.202.186.37 | - | 18/Sep/2013:15:39:11| /wp-content/uploads/2013/08/windjs.png| 200| 34613 | "http://cnodejs.org/topic/521a30d4bee8d3cb1272ac0f" | "Mozilla/5.0 (Macintosh;|
实现步骤

1、对原始数据进行抽取转换

–将来访url分离出host path query query id

drop table if exists t_etl_referurl;
create table t_etl_referurl as
SELECT a.*,b.*
FROM t_orgin_weblog a LATERAL VIEW parse_url_tuple(regexp_replace(http_referer, "\"", ""), 'HOST', 'PATH','QUERY', 'QUERY:id') b as host, path, query, query_id

2、从前述步骤进一步分离出日期时间形成ETL明细表“t_etl_detail” day tm

drop table if exists t_etl_detail;
create table t_etl_detail as 
select b.*,substring(time_local,0,11) as daystr,
substring(time_local,13) as tmstr,
substring(time_local,4,3) as month,
substring(time_local,0,2) as day,
substring(time_local,13,2) as hour
from t_etl_referurl b;

3、对etl数据进行分区(包含所有数据的结构化信息)

drop table t_etl_detail_prt;
create table t_etl_detail_prt(
valid                   string,
remote_addr            string,
remote_user            string,
time_local               string,
request                 string,
status                  string,
body_bytes_sent         string,
http_referer             string,
http_user_agent         string,
host                   string,
path                   string,
query                  string,
query_id               string,
daystr                 string,
tmstr                  string,
month                  string,
day                    string,
hour                   string) 
partitioned by (mm string,dd string);

导入数据

insert into table t_etl_detail_prt partition(mm='Sep',dd='18')
select * from t_etl_detail where daystr='18/Sep/2013';
insert into table t_etl_detail_prt partition(mm='Sep',dd='19')
select * from t_etl_detail where daystr='19/Sep/2013';

分个时间维度统计各referer_host的访问次数并排序

create table t_refer_host_visit_top_tmp as
select referer_host,count(*) as counts,mm,dd,hh from t_display_referer_counts group by hh,dd,mm,referer_host order by hh asc,dd asc,mm asc,counts desc;

4、来源访问次数topn各时间维度URL

取各时间维度的referer_host访问次数topn

select * from (select referer_host,counts,concat(hh,dd),row_number() over (partition by concat(hh,dd) order by concat(hh,dd) asc) as od from t_refer_host_visit_top_tmp) t where od<=3;


目录
相关文章
|
1月前
|
SQL 分布式计算 Hadoop
创建hive表并关联数据
创建hive表并关联数据
41 0
|
1月前
|
SQL 关系型数据库 MySQL
Sqoop【付诸实践 01】Sqoop1最新版 MySQL与HDFS\Hive\HBase 核心导入导出案例分享+多个WRAN及Exception问题处理(一篇即可学会在日常工作中使用Sqoop)
【2月更文挑战第9天】Sqoop【付诸实践 01】Sqoop1最新版 MySQL与HDFS\Hive\HBase 核心导入导出案例分享+多个WRAN及Exception问题处理(一篇即可学会在日常工作中使用Sqoop)
118 7
|
1天前
|
SQL 分布式计算 HIVE
实时计算 Flink版产品使用问题之同步到Hudi的数据是否可以被Hive或Spark直接读取
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
1天前
|
消息中间件 存储 SQL
实时计算 Flink版产品使用问题之kafka2hive同步数据时,如何回溯历史数据
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5天前
|
SQL 分布式计算 NoSQL
使用Spark高效将数据从Hive写入Redis (功能最全)
使用Spark高效将数据从Hive写入Redis (功能最全)
|
5天前
|
SQL 关系型数据库 MySQL
基于Hive的天气情况大数据分析系统(通过hive进行大数据分析将分析的数据通过sqoop导入到mysql,通过Django基于mysql的数据做可视化)
基于Hive的天气情况大数据分析系统(通过hive进行大数据分析将分析的数据通过sqoop导入到mysql,通过Django基于mysql的数据做可视化)
|
22天前
|
SQL 分布式计算 关系型数据库
使用 Spark 抽取 MySQL 数据到 Hive 时某列字段值出现异常(字段错位)
在 MySQL 的 `order_info` 表中,包含 `order_id` 等5个字段,主要存储订单信息。执行按 `create_time` 降序的查询,显示了部分结果。在 Hive 中复制此表结构时,所有字段除 `order_id` 外设为 `string` 类型,并添加了 `etl_date` 分区字段。然而,由于使用逗号作为字段分隔符,当 `address` 字段含逗号时,数据写入 Hive 出现错位,导致 `create_time` 值变为中文字符串。问题解决方法包括更换字段分隔符或使用 Hive 默认分隔符 `\u0001`。此案例提醒在建表时需谨慎选择字段分隔符。
|
22天前
|
SQL 存储 JSON
Hive 解析 JSON 字符串数据的实现方式
Hive 提供 `get_json_object` 函数解析 JSON 字符串,如 `{&quot;database&quot;:&quot;maxwell&quot;}`。`path` 参数使用 `$`、`.`、`[]` 和 `*` 来提取数据。示例中展示了如何解析复杂 JSON 并存储到表中。此外,Hive 3.0.0及以上版本内置 `JsonSerDe` 支持直接处理 JSON 文件,无需手动解析。创建表时指定 `JsonSerDe` 序列化器,并在 HDFS 上存放 JSON 文件,可以直接查询字段内容,方便快捷。
|
22天前
|
SQL HIVE UED
【Hive SQL 每日一题】分析电商平台的用户行为和订单数据
作为一名数据分析师,你需要分析电商平台的用户行为和订单数据。你有三张表:`users`(用户信息),`orders`(订单信息)和`order_items`(订单商品信息)。任务包括计算用户总订单金额和数量,按月统计订单,找出最常购买的商品,找到平均每月最高订单金额和数量的用户,以及分析高消费用户群体的年龄和性别分布。通过SQL查询,你可以实现这些分析,例如使用`GROUP BY`、`JOIN`和窗口函数来排序和排名。
|
1月前
|
SQL 数据采集 存储
Hive实战 —— 电商数据分析(全流程详解 真实数据)
关于基于小型数据的Hive数仓构建实战,目的是通过分析某零售企业的门店数据来进行业务洞察。内容涵盖了数据清洗、数据分析和Hive表的创建。项目需求包括客户画像、消费统计、资源利用率、特征人群定位和数据可视化。数据源包括Customer、Transaction、Store和Review四张表,涉及多个维度的聚合和分析,如按性别、国家统计客户、按时间段计算总收入等。项目执行需先下载数据和配置Zeppelin环境,然后通过Hive进行数据清洗、建表和分析。在建表过程中,涉及ODS、DWD、DWT、DWS和DM五层,每层都有其特定的任务和粒度。最后,通过Hive SQL进行各种业务指标的计算和分析。
221 1
Hive实战 —— 电商数据分析(全流程详解 真实数据)