Apache Doris Profile&Explain详解

简介: Apache Doris Profile&Explain详解

一、简述

Apache Doris中运行EXPLAIN + SQL就可以得到SQL对应的Query Plan,再结合Apche Doris的Profile可以了解Doris是如何处理SQL语句,用于分析查询语句或是结构的性能瓶颈,从而帮助选择更好的索引和写出更优化的查询语句。

二、Plan分析

2.1 sql准备

tpcds query96.sql为例

explain
-- explain graph 生成对应执行计划图表
select  count(*)
from store_sales
    ,household_demographics
    ,time_dim
    , store
where ss_sold_time_sk = time_dim.t_time_sk
    and ss_hdemo_sk = household_demographics.hd_demo_sk
    and ss_store_sk = s_store_sk
    and time_dim.t_hour = 8
    and time_dim.t_minute >= 30
    and household_demographics.hd_dep_count = 5
    and store.s_store_name = 'ese'
order by count(*) limit 100;

2.2 explain结果分析

Query Plan可以分为逻辑执行计划(Logical Query Plan)和物理执行计划(Physical Query Plan),当前讲述的Query Plan默认指逻辑执行计划;tpcds query96.sql对应的Query Plan展示如下。

-- graph 
                                         ┌───────────────┐
                                        │[8: ResultSink]│
                                        │[Fragment: 4]  │
                                        │RESULT SINK    │
                                        └───────────────┘
                                         ┌─────────────┐
                                         │[8: TOP-N]   │
                                         │[Fragment: 4]│
                                         └─────────────┘
                               ┌────────────────────────────────┐
                               │[13: AGGREGATE (merge finalize)]│
                               │[Fragment: 4]                   │
                               └────────────────────────────────┘
                                        ┌──────────────┐
                                        │[12: EXCHANGE]│
                                        │[Fragment: 4] │
                                        └──────────────┘
                                     ┌────────────────────┐
                                     │[12: DataStreamSink]│
                                     │[Fragment: 0]       │
                                     │STREAM DATA SINK    │
                                     │  EXCHANGE ID: 12   │
                                     │  UNPARTITIONED     │
                                     └────────────────────┘
                               ┌─────────────────────────────────┐
                               │[7: AGGREGATE (update serialize)]│
                               │[Fragment: 0]                    │
                               └─────────────────────────────────┘
                                ┌───────────────────────────────┐
                                │[6: HASH JOIN]                 │
                                │[Fragment: 0]                  │
                                │join op: INNER JOIN (BROADCAST)│
                                └───────────────────────────────┘
                                    ┌───────────┴─────────────────────────────────────┐
                                    │                                                 │
                    ┌───────────────────────────────┐                         ┌──────────────┐
                    │[4: HASH JOIN]                 │                         │[11: EXCHANGE]│
                    │[Fragment: 0]                  │                         │[Fragment: 0] │
                    │join op: INNER JOIN (BROADCAST)│                         └──────────────┘
                    └───────────────────────────────┘                                 │
                    ┌───────────────┴─────────────────────┐                           │
                    │                                     │                ┌────────────────────┐
    ┌───────────────────────────────┐             ┌──────────────┐         │[11: DataStreamSink]│
    │[2: HASH JOIN]                 │             │[10: EXCHANGE]│         │[Fragment: 3]       │
    │[Fragment: 0]                  │             │[Fragment: 0] │         │STREAM DATA SINK    │
    │join op: INNER JOIN (BROADCAST)│             └──────────────┘         │  EXCHANGE ID: 11   │
    └───────────────────────────────┘                     │                │  UNPARTITIONED     │
          ┌─────────┴──────────┐                          │                └────────────────────┘
          │                    │               ┌────────────────────┐                ┌┘
┌──────────────────┐    ┌─────────────┐        │[10: DataStreamSink]│                │
│[0: OlapScanNode] │    │[9: EXCHANGE]│        │[Fragment: 2]       │       ┌─────────────────┐
│[Fragment: 0]     │    │[Fragment: 0]│        │STREAM DATA SINK    │       │[5: OlapScanNode]│
│TABLE: store_sales│    └─────────────┘        │  EXCHANGE ID: 10   │       │[Fragment: 3]    │
└──────────────────┘           │               │  UNPARTITIONED     │       │TABLE: store     │
                               │               └────────────────────┘       └─────────────────┘
                     ┌───────────────────┐                │
                     │[9: DataStreamSink]│                │
                     │[Fragment: 1]      │ ┌─────────────────────────────┐
                     │STREAM DATA SINK   │ │[3: OlapScanNode]            │
                     │  EXCHANGE ID: 09  │ │[Fragment: 2]                │
                     │  UNPARTITIONED    │ │TABLE: household_demographics│
                     └───────────────────┘ └─────────────────────────────┘
                      ┌─────────────────┐
                      │[1: OlapScanNode]│
                      │[Fragment: 1]    │
                      │TABLE: time_dim  │
                      └─────────────────┘
-- 非graph 
PLAN FRAGMENT 0
 OUTPUT EXPRS:<slot 11> <slot 10> count(*)
  PARTITION: UNPARTITIONED
  RESULT SINK
  8:TOP-N
  |  order by: <slot 11> <slot 10> count(*) ASC
  |  offset: 0
  |  limit: 100
  |  
  13:AGGREGATE (merge finalize)
  |  output: count(<slot 10> count(*))
  |  group by: 
  |  cardinality=-1
  |  
  12:EXCHANGE
PLAN FRAGMENT 1
 OUTPUT EXPRS:
  PARTITION: HASH_PARTITIONED: `default_cluster:tpcds`.`store_sales`.`ss_item_sk`, `default_cluster:tpcds`.`store_sales`.`ss_ticket_number`
  STREAM DATA SINK
    EXCHANGE ID: 12
    UNPARTITIONED
  7:AGGREGATE (update serialize)
  |  output: count(*)
  |  group by: 
  |  cardinality=1
  |  
  6:HASH JOIN
  |  join op: INNER JOIN (BROADCAST)
  |  hash predicates:
  |  colocate: false, reason: Tables are not in the same group
  |  equal join conjunct: `ss_store_sk` = `s_store_sk`
  |  runtime filters: RF000[in] <- `s_store_sk`
  |  cardinality=2880403
  |  
  |----11:EXCHANGE
  |    
  4:HASH JOIN
  |  join op: INNER JOIN (BROADCAST)
  |  hash predicates:
  |  colocate: false, reason: Tables are not in the same group
  |  equal join conjunct: `ss_hdemo_sk` = `household_demographics`.`hd_demo_sk`
  |  runtime filters: RF001[in] <- `household_demographics`.`hd_demo_sk`
  |  cardinality=2880403
  |  
  |----10:EXCHANGE
  |    
  2:HASH JOIN
  |  join op: INNER JOIN (BROADCAST)
  |  hash predicates:
  |  colocate: false, reason: Tables are not in the same group
  |  equal join conjunct: `ss_sold_time_sk` = `time_dim`.`t_time_sk`
  |  runtime filters: RF002[in] <- `time_dim`.`t_time_sk`
  |  cardinality=2880403
  |  
  |----9:EXCHANGE
  |    
  0:OlapScanNode
     TABLE: store_sales
     PREAGGREGATION: OFF. Reason: conjunct on `ss_sold_time_sk` which is StorageEngine value column
     PREDICATES: `default_cluster:tpcds.store_sales`.`__DORIS_DELETE_SIGN__` = 0
     runtime filters: RF000[in] -> `ss_store_sk`, RF001[in] -> `ss_hdemo_sk`, RF002[in] -> `ss_sold_time_sk`
     partitions=1/1
     rollup: store_sales
     tabletRatio=3/3
     tabletList=20968,20972,20976
     cardinality=2880403
     avgRowSize=67.95811
     numNodes=3
PLAN FRAGMENT 2
 OUTPUT EXPRS:
  PARTITION: HASH_PARTITIONED: `default_cluster:tpcds`.`store`.`s_store_sk`
  STREAM DATA SINK
    EXCHANGE ID: 11
    UNPARTITIONED
  5:OlapScanNode
     TABLE: store
     PREAGGREGATION: OFF. Reason: null
     PREDICATES: `store`.`s_store_name` = 'ese', `default_cluster:tpcds.store`.`__DORIS_DELETE_SIGN__` = 0
     partitions=1/1
     rollup: store
     tabletRatio=3/3
     tabletList=20773,20777,20781
     cardinality=23
     avgRowSize=1798.8695
     numNodes=3
PLAN FRAGMENT 3
 OUTPUT EXPRS:
  PARTITION: HASH_PARTITIONED: `default_cluster:tpcds`.`household_demographics`.`hd_demo_sk`
  STREAM DATA SINK
    EXCHANGE ID: 10
    UNPARTITIONED
  3:OlapScanNode
     TABLE: household_demographics
     PREAGGREGATION: OFF. Reason: null
     PREDICATES: `household_demographics`.`hd_dep_count` = 5, `default_cluster:tpcds.household_demographics`.`__DORIS_DELETE_SIGN__` = 0
     partitions=1/1
     rollup: household_demographics
     tabletRatio=3/3
     tabletList=20848,20852,20856
     cardinality=14399
     avgRowSize=2.8781166
     numNodes=3
PLAN FRAGMENT 4
 OUTPUT EXPRS:
  PARTITION: HASH_PARTITIONED: `default_cluster:tpcds`.`time_dim`.`t_time_sk`
  STREAM DATA SINK
    EXCHANGE ID: 09
    UNPARTITIONED
  1:OlapScanNode
     TABLE: time_dim
     PREAGGREGATION: OFF. Reason: null
     PREDICATES: `time_dim`.`t_hour` = 8, `time_dim`.`t_minute` >= 30, `default_cluster:tpcds.time_dim`.`__DORIS_DELETE_SIGN__` = 0
     partitions=1/1
     rollup: time_dim
     tabletRatio=3/3
     tabletList=20713,20717,20721
     cardinality=172799
     avgRowSize=11.671202
     numNodes=3

2.2.1 常见属性说明

Colocate Join 适合几张表按照相同字段分桶,并高频根据相同字段 Join 的场景,比如电商的不少应用都按照商家 Id 分桶,并高频按照商家 Id 进行 Join。

2.2.2 plan分析

  • Query96的Query Plan分为五个Plan Fragment,编号从0~4
  • 分析Query Plan可以采用自底向上的方式进行,逐个进行分析
  • 最底部的Plan Fragment为Fragment 4分析
  • 主要负责扫描time_dim表,并提前执行相关查询条件,即谓词下推
  • 对于聚合表(Aggregate Key),doris会根据不同查询选择是否开启PREAGGREGATION,上图中time_dim的预聚合为关闭状态,关闭状态之下会读取time_dim的全部维度列,当表中维度列多的时候,这个可能会成为影响性能的一个关键因素
  • 如果time_dim表有选择Range Partition进行数据划分,Query Plan中的partitions会表征查询命中几个分区,无关分区被自动过滤会有效减少扫描数据量
  • 如果有物化视图,doris会根据查询去自动选择物化视图,如果没有物化视图,那么查询自动命中base table,也就是上图中展示的rollup: time_dim,可参考doris测试物化视图
  • 当time_dim数据扫描完成之后,Fragment 4的执行过程也就随之结束,此时它将扫描得到的数据传递给你其它Fragment,EXCHANGE ID : 09表示数据传递给了标号为9的接收节点,可通过graph查看
  • 对于Query96的Query Plan而言,Fragment 2, 3, 4功能类似,只是负责扫描的表不同;具体到查询中的Order/Aggregation/Join算子,都在Fragment 1中进行,着重分析Fragment 1
  • Fragment 1集成了三个Join算子的执行,采用默认的BROADCAST方式进行执行,也就是小表向大表广播的方式进行,如果两个Join的表都是大表,建议采用SHUFFLE的方式进行
  • 目前doris只支持HASH JOIN,也就是采用哈希算法进行Join
  • 其中有一个colocate字段,这个用来表述两张Join表采用同样的分区/分桶方式,如此执行Join的过程中可以直接在本地执行,不用进行数据的移动
  • Join执行完成之后,就是执行上成的Aggregation, Order by和TOP-N的算子

三、Doris-Profile简述

可通过8030页面的QueryProfile模块查看任务执行详情,以下为query96.sql实际执行的QueryProfile部分内容,各指标名详情可参考:Apache Doris查询分析

Query:
    Summary:
          -  Query  ID:  7dd4ba245012441c-b0aadbed39f80f20
          -  Start  Time:  2022-04-15  15:52:22
          -  End  Time:  2022-04-15  15:52:22
          -  Total:  611ms
          -  Query  Type:  Query
          -  Query  State:  EOF
          -  Doris  Version:  0.15.0-rc04
          -  User:  root
          -  Default  Db:  default_cluster:tpcds
          -  Sql  Statement:  /*  ApplicationName=DBeaver  Enterprise  7.0.0  -  SQLEditor  <20220321常用命令-doris.sql>  */  select    count(*)
from  store_sales
        ,household_demographics
        ,time_dim
        ,  store
where  ss_sold_time_sk  =  time_dim.t_time_sk
        and  ss_hdemo_sk  =  household_demographics.hd_demo_sk
        and  ss_store_sk  =  s_store_sk
        and  time_dim.t_hour  =  8
        and  time_dim.t_minute  >=  30
        and  household_demographics.hd_dep_count  =  5
        and  store.s_store_name  =  'ese'
order  by  count(*)  limit  100
          -  Is  Cached:  No
        Execution  Summary:
              -  Analysis  Time:  636.648us
              -  Plan  Time:  19.230ms
              -  Schedule  Time:  125.121ms
              -  Wait  and  Fetch  Result  Time:  466.30ms
    Execution  Profile  7dd4ba245012441c-b0aadbed39f80f20:(Active:  611.44ms,  %  non-child:  100.00%)
        Fragment  0:
            Instance  7dd4ba245012441c-b0aadbed39f80f2d  (host=TNetworkAddress(hostname:10.192.119.70,  port:9060)):(Active:  586.950ms,  %  non-child:  0.00%)
                  -  FragmentCpuTime:  756.962us
                  -  MemoryLimit:  2.00  GB
                  -  PeakMemoryUsage:  48.01  KB
                  -  PeakReservation:  0.00  
                  -  PeakUsedReservation:  0.00  
                  -  RowsProduced:  1
                BlockMgr:
                      -  BlockWritesOutstanding:  0
                      -  BlocksCreated:  0
                      -  BlocksRecycled:  0
                      -  BufferedPins:  0
                      -  BytesWritten:  0.00  
                      -  MaxBlockSize:  8.00  MB
                      -  TotalBufferWaitTime:  0ns
                      -  TotalEncryptionTime:  0ns
                      -  TotalIntegrityCheckTime:  0ns
                      -  TotalReadBlockTime:  0ns
                DataBufferSender  (dst_fragment_instance_id=7dd4ba245012441c-b0aadbed39f80f2d):
                      -  AppendBatchTime:  124.481us
                          -  ResultSendTime:  119.257us
                          -  TupleConvertTime:  4.217us
                      -  NumSentRows:  1
                SORT_NODE  (id=8):(Active:  587.36ms,  %  non-child:  0.01%)
                      -  PeakMemoryUsage:  16.00  KB
                      -  RowsReturned:  1
                      -  RowsReturnedRate:  1
                    AGGREGATION_NODE  (id=13):(Active:  586.958ms,  %  non-child:  0.10%)
                          -  Probe  Method:  HashTable  Linear  Probing
                          -  BuildTime:  10.533us
                          -  GetResultsTime:  0ns
                          -  HTResize:  0
                          -  HTResizeTime:  0ns
                          -  HashBuckets:  0
                          -  HashCollisions:  0
                          -  HashFailedProbe:  0
                          -  HashFilledBuckets:  0
                          -  HashProbe:  0
                          -  HashTravelLength:  0
                          -  LargestPartitionPercent:  0
                          -  MaxPartitionLevel:  0
                          -  NumRepartitions:  0
                          -  PartitionsCreated:  0
                          -  PeakMemoryUsage:  28.00  KB
                          -  RowsProcessed:  0
                          -  RowsRepartitioned:  0
                          -  RowsReturned:  1
                          -  RowsReturnedRate:  1
                          -  SpilledPartitions:  0
                        EXCHANGE_NODE  (id=12):(Active:  586.364ms,  %  non-child:  95.96%)
                              -  BytesReceived:  32.00  B
                              -  ConvertRowBatchTime:  7.320us
                              -  DataArrivalWaitTime:  586.282ms
                              -  DeserializeRowBatchTimer:  22.637us
                              -  FirstBatchArrivalWaitTime:  349.530ms
                              -  PeakMemoryUsage:  12.01  KB
                              -  RowsReturned:  3
                              -  RowsReturnedRate:  5
                              -  SendersBlockedTotalTimer(*):  0ns
        Fragment  1:
            Instance  7dd4ba245012441c-b0aadbed39f80f23  (host=TNetworkAddress(hostname:10.192.119.68,  port:9060)):(Active:  472.511ms,  %  non-child:  0.10%)
                  -  FragmentCpuTime:  5.714ms
                  -  MemoryLimit:  2.00  GB
                  -  PeakMemoryUsage:  610.00  KB
                  -  PeakReservation:  0.00  
                  -  PeakUsedReservation:  0.00  
                  -  RowsProduced:  1
                BlockMgr:
                      -  BlockWritesOutstanding:  0
                      -  BlocksCreated:  0
                      -  BlocksRecycled:  0
                      -  BufferedPins:  0
                      -  BytesWritten:  0.00  
                      -  MaxBlockSize:  8.00  MB
                      -  TotalBufferWaitTime:  0ns
                      -  TotalEncryptionTime:  0ns
                      -  TotalIntegrityCheckTime:  0ns
                      -  TotalReadBlockTime:  0ns
                DataStreamSender  (dst_id=12,  dst_fragments=[7dd4ba245012441c-b0aadbed39f80f2d]):(Active:  186.357us,  %  non-child:  0.03%)
                      -  BytesSent:  16.00  B
                      -  IgnoreRows:  0
                      -  LocalBytesSent:  0.00  
                      -  OverallThroughput:  83.84375  KB/sec
                      -  PeakMemoryUsage:  16.00  KB
                      -  SerializeBatchTime:  7.0us
                      -  UncompressedRowBatchSize:  16.00  B
                AGGREGATION_NODE  (id=7):(Active:  471.713ms,  %  non-child:  0.14%)
                      -  Probe  Method:  HashTable  Linear  Probing
                      -  BuildTime:  45.223us
                      -  GetResultsTime:  0ns
                      -  HTResize:  0
                      -  HTResizeTime:  0ns
                      -  HashBuckets:  0
                      -  HashCollisions:  0
                      -  HashFailedProbe:  0
                      -  HashFilledBuckets:  0
                      -  HashProbe:  0
                      -  HashTravelLength:  0
                      -  LargestPartitionPercent:  0
                      -  MaxPartitionLevel:  0
                      -  NumRepartitions:  0
                      -  PartitionsCreated:  0
                      -  PeakMemoryUsage:  280.00  KB
                      -  RowsProcessed:  0
                      -  RowsRepartitioned:  0
                      -  RowsReturned:  1
                      -  RowsReturnedRate:  2
                      -  SpilledPartitions:  0
                    HASH_JOIN_NODE  (id=6):(Active:  470.881ms,  %  non-child:  0.08%)
                          -  ExecOption:  Hash  Table  Built  Asynchronously
                          -  BuildBuckets:  1.024K  (1024)
                          -  BuildRows:  1
                          -  BuildTime:  1.129ms
                          -  HashTableMaxList:  1
                          -  HashTableMinList:  1
                          -  LoadFactor:  4562146422526312400.00
                          -  PeakMemoryUsage:  308.00  KB
                          -  ProbeRows:  341
                          -  ProbeTime:  34.697us
                          -  PushDownComputeTime:  156.171us
                          -  PushDownTime:  4.423us
                          -  RowsReturned:  341
                          -  RowsReturnedRate:  724
  • Active:表示该节点(包含其所有子节点)的执行时间
  • BuildTime:扫描右表并构建hash表的时间
  • ProbeTime:获取左表并搜索hashtable进行匹配并输出的时间
相关文章
|
11天前
|
存储 SQL Apache
Apache Doris 创始人:何为“现代化”的数据仓库?
3.0 版本是 Apache Doris 研发路程中的重要里程碑,他将这一进展总结为“实时之路”、“统一之路”和“弹性之路”,详细介绍了所对应的核心特性的设计思考与应用价值,揭晓了 2025 年社区发展蓝图
Apache Doris 创始人:何为“现代化”的数据仓库?
|
13天前
|
SQL 存储 数据处理
别让你的CPU打盹儿:Apache Doris并行执行原理大揭秘!
别让你的CPU打盹儿:Apache Doris并行执行原理大揭秘!
57 1
别让你的CPU打盹儿:Apache Doris并行执行原理大揭秘!
|
3天前
|
存储 SQL 监控
计算效率提升 10 倍,存储成本降低 60%,灵犀科技基于 Apache Doris 建设统一数据服务平台
灵犀科技早期基于 Hadoop 构建大数据平台,在战略调整和需求的持续扩增下,数据处理效率、查询性能、资源成本问题随之出现。为此,引入 [Apache Doris](https://doris.apache.org/) 替换了复杂技术栈,升级为集存储、加工、服务为一体的统一架构,实现存储成本下降 60%,计算效率提升超 10 倍的显著成效。
计算效率提升 10 倍,存储成本降低 60%,灵犀科技基于 Apache Doris 建设统一数据服务平台
|
2月前
|
存储 消息中间件 分布式计算
Cisco WebEx 数据平台:统一 Trino、Pinot、Iceberg 及 Kyuubi,探索 Apache Doris 在 Cisco 的改造实践
Cisco WebEx 早期数据平台采用了多系统架构(包括 Trino、Pinot、Iceberg 、 Kyuubi 等),面临架构复杂、数据冗余存储、运维困难、资源利用率低、数据时效性差等问题。因此,引入 Apache Doris 替换了 Trino、Pinot 、 Iceberg 及 Kyuubi 技术栈,依赖于 Doris 的实时数据湖能力及高性能 OLAP 分析能力,统一数据湖仓及查询分析引擎,显著提升了查询性能及系统稳定性,同时实现资源成本降低 30%。
Cisco WebEx 数据平台:统一 Trino、Pinot、Iceberg 及 Kyuubi,探索 Apache Doris 在 Cisco 的改造实践
|
28天前
|
SQL 存储 Apache
Apache Doris 3.0.3 版本正式发布
亲爱的社区小伙伴们,Apache Doris 3.0.3 版本已于 2024 年 12 月 02 日正式发布。该版本进一步提升了系统的性能及稳定性,欢迎大家下载体验。
|
2月前
|
SQL 存储 数据处理
兼顾高性能与低成本,浅析 Apache Doris 异步物化视图原理及典型场景
Apache Doris 物化视图进行了支持。**早期版本中,Doris 支持同步物化视图;从 2.1 版本开始,正式引入异步物化视图,[并在 3.0 版本中完善了这一功能](https://www.selectdb.com/blog/1058)。**
|
2月前
|
SQL 存储 Java
Apache Doris 2.1.7 版本正式发布
亲爱的社区小伙伴们,**Apache Doris 2.1.7 版本已于 2024 年 11 月 10 日正式发布。**2.1.7 版本持续升级改进,同时在湖仓一体、异步物化视图、半结构化数据管理、查询优化器、执行引擎、存储管理、以及权限管理等方面完成了若干修复。欢迎大家下载使用。
|
24天前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
312 33
The Past, Present and Future of Apache Flink
|
3月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
888 13
Apache Flink 2.0-preview released
|
3月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
113 3

热门文章

最新文章

推荐镜像

更多