【LeetCode 算法专题突破】二叉树的深度优先遍历(⭐)

简介: 【LeetCode 算法专题突破】二叉树的深度优先遍历(⭐)

前言

接下来我要开始攻克二叉树这一个大难题了,我打算把二叉树分成四个部分进行总结:

  1. 二叉树的深度优先遍历
  2. 二叉树的广度优先遍历(也叫层序遍历)
  3. 二叉树的基本属性求解
  4. 二叉树其他相关问题(删改、求公共祖先、二叉搜索树等等)

那我也不废话了,直接开始。

1. 二叉树的前序遍历

接下来,我们就将二叉树的前中后序的递归遍历都做一遍,然后再分别将这四种遍历的迭代实现方法也做一遍,基础不牢,地动山摇,我们慢慢来,一步一个脚印学好二叉树!

题目链接:144. 二叉树的前序遍历

题目描述

所谓的前中后序遍历,在前中后的是什么?其实就是根节点,所以我一般习惯用一个口诀来记住前中后序的遍历顺序:

  1. 前序就是:根左右
  2. 中序就是:左根右
  3. 后序就是:左右根

这其实就是按照根在遍历中的顺序划分的遍历方式。来看代码:

代码

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func preorderTraversal(root *TreeNode) (res []int) {
    var preorder func(node *TreeNode)
    preorder = func(node *TreeNode) {
        if node == nil {
            return
        }
        res = append(res, node.Val) // 根
        preorder(node.Left)  // 左
        preorder(node.Right) // 右
    }
    preorder(root) // 调用前序遍历
    return res
}

我们来看这个代码,其实这就是一个简单的递归遍历的函数,所谓的 “根左右” 其实就是先把 “根” 位置的值给塞进 res 数组而已。

2. 二叉树的中序遍历

那就继续中序遍历

题目链接:94. 二叉树的中序遍历

题目描述

其实刚刚已经介绍过前中后序是怎么样的了,所以我们直接看代码:

代码

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func inorderTraversal(root *TreeNode) (res []int) {
    var inorder func(node *TreeNode)
    inorder = func(node *TreeNode) {
        if node == nil {
            return 
        }
        inorder(node.Left)
        res = append(res, node.Val)
        inorder(node.Right)
    }
    inorder(root)
    return res
}

这里我注释也懒得打了,可以发现他其实比起前序遍历就只是改了一个地方的代码,就是把 根 的位置和向左递归的位置换了一下,这就是中序遍历的遍历方法。

3. 二叉树的后序遍历

一做肯定是得做全套滴

题目链接:145. 二叉树的后序遍历

题目描述

其实现在题目描述也没有什么意义了,知道是后序遍历,我们直接写代码就完了:

代码

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func postorderTraversal(root *TreeNode) (res []int) {
    var postorder func(node *TreeNode) 
    postorder = func(node *TreeNode) {
        if node == nil {
            return 
        }
        postorder(node.Left)
        postorder(node.Right)
        res = append(res, node.Val)
    } 
    postorder(root)
    return res
}

没有意外,也是朴实无华的改个代码的位置。

现在开胃小菜算是做完了,像前中后这样的遍历其实并没有什么难度,所以我们还需要挑战一下前中后序的非递归遍历,不然不能算是真正学会了这三种遍历的方式。既是锻炼我们的代码能力,也是让我们熟悉二叉树的基本遍历方式,打牢基础,后面才不会越看越懵逼。

4. 前序遍历的非递归实现

这里我就不把题目描述给放出来了,这里我们用的就是第一题

代码与思路

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func preorderTraversal(root *TreeNode) (ans []int) {
    if root == nil {
        return
    }
    st := list.New()
    st.PushBack(root)
    for st.Len() > 0 {
        node := st.Remove(st.Back()).(*TreeNode)
        ans = append(ans, node.Val)
        if node.Right != nil {
            st.PushBack(node.Right)
        }
        if node.Left != nil {
            st.PushBack(node.Left)
        }
    }
    return ans
}

我来讲讲使用迭代法求解的一个流程,采取的是用一个栈来模拟递归的方法(这里我采用的是 go 语言的 list 来模拟栈操作),模拟前序遍历 “根左右” 的遍历方式

  1. 首先将根(或者说当前走到的节点)的值存入数组
  2. 然后分别将右节点和左节点入栈,因为出栈的顺序是相反的,所以我们入栈的时候就要这样先入右节点再入左节点,这样出栈遍历的时候就能达成 “根左右” 的遍历方式了

其实核心的步骤就是这两步,那我们继续实现中序的非递归遍历

5. 中序遍历的非递归实现

代码与思路

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func inorderTraversal(root *TreeNode) (ans []int) {
    st := list.New()
    cur := root
    for cur != nil || st.Len() > 0 {
        if cur != nil {
            st.PushBack(cur)
            cur = cur.Left
        } else {
            cur = st.Remove(st.Back()).(*TreeNode)
            ans = append(ans, cur.Val)
            cur = cur.Right
        }
    }
    return ans
}

前序遍历的时候,我们就是不断计算根位置的值,然后只管用栈按顺序遍历二叉树就行了,但是到了中序遍历,我们需要取的是左节点的值,所以我们就需要在左节点遍历的时候边遍历边取值,我们来根据代码梳理一下他的流程

  1. 将当前节点入栈,然后一直往左遍历直到走到 nil
  2. 走到 nil 之后,上一个节点,也就是栈顶的元素就是最左节点,输出到 ans
  3. 然后往右遍历一步,持续这个三步循环

这三步模拟的就是 “左根右” 的遍历方式,刚好也是三步,找到最左,取根,找右,循环往复,就能完成中序遍历了。迭代算法确实不太好想,但是上手模拟一遍还是比较好理解的。

6. 后序遍历的非递归实现

代码与思路

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func postorderTraversal(root *TreeNode) (ans []int) {
    if root == nil {
        return
    }
    st := list.New()
    st.PushBack(root)
    for st.Len() > 0 {
        node := st.Remove(st.Back()).(*TreeNode)
        ans = append(ans, node.Val)
        if node.Left != nil {
            st.PushBack(node.Left)
        }
        if node.Right != nil {
            st.PushBack(node.Right)
        }
    }
    reverse(ans)
    return ans
}
func reverse(a []int) { // 反转数组
    l, r := 0, len(a)-1
    for l < r {
        a[l], a[r] = a[r], a[l]
        l, r = l+1, r-1
    }
}

后序遍历有一个非常巧妙的解法:因为前序遍历是 “根左右”,后续遍历是 “左右根”,如果我们根据 “根右左” 的顺序来进行遍历,然后再将结果进行反转就能将 “根右左” -> “左右根”,这样就完成了后续遍历,也就是我们只需要修改一下前序遍历的代码即可

就那上述代码来说,我将遍历左右的顺序进行了调换,然后实现了一个 reverse 反转数组(go 语言没有 C++ 那样提供 STL,难受)按照刚刚分析出来的思路实现后序遍历。

总结

基础不牢,地动山摇,把二叉树的前中后序学会,我们下一节挑战二叉树的广度优先遍历,又或者说,二叉树的层序遍历。

相关文章
|
5月前
|
存储 算法 数据可视化
【二叉树遍历入门:从中序遍历到层序与右视图】【LeetCode 热题100】94:二叉树的中序遍历、102:二叉树的层序遍历、199:二叉树的右视图(详细解析)(Go语言版)
本文详细解析了二叉树的三种经典遍历方式:中序遍历(94题)、层序遍历(102题)和右视图(199题)。通过递归与迭代实现中序遍历,深入理解深度优先搜索(DFS);借助队列完成层序遍历和右视图,掌握广度优先搜索(BFS)。文章对比DFS与BFS的思维方式,总结不同遍历的应用场景,为后续构造树结构奠定基础。
236 10
|
6月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
153 10
 算法系列之数据结构-二叉树
|
10月前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
240 64
|
8月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
236 3
|
9月前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
131 5
|
10月前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
227 5
|
10月前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
193 4
|
10月前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
424 0
|
11月前
|
算法
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
100 2
|
11月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
116 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)

热门文章

最新文章