【每日挠头算法题(9)】二叉树的直径|二叉树的层序遍历

简介: 【每日挠头算法题(9)】二叉树的直径|二叉树的层序遍历

一、二叉树的直径

点我直达~

思路:二叉树的深度优先搜索

根据题目要求,求二叉树的直径,就是求二叉树的任意一个节点左右子树的最大深度,左右子树的最大深度的就是所求的路径。

看下图理解:

对于节点2来说,其左子树的最大深度为2,说明一定有一条大小为2的路径直通左子树的叶子节点,其右子树的最大深度为2,说明一定有一条大小为2的路径直通右子树的叶子节点,这样从以节点2为根节点的树的任意一个叶子节点一定有一条大小为4的路径到达另一个叶子节点。

所以我们需要做的就是找到任意一个节点的左右子树的最大深度。

  • 按照深度优先搜索的算法,我们首先持续遍历左子节点。如果节点为空,返回0
  • 将左右子树都遍历后,比较左右子树的高度,再返回大的高度+1就是当前节点的高度。
  • 注意:在这个过程,我们需要用一个全局变量max来更新每一次遍历某一个节点之后他的最长路径,也就是该节点的左右子树的高度之和。

具体代码如下:

class Solution {
public:
    int MAX; //记录每一次遍历一个节点的左右子树后的最长路径
    int depth(TreeNode* root)
    {
        if(root == nullptr)
            return 0;
        int l = depth(root->left);//递归左子树的最大深度
        int r = depth(root->right);//递归右子树的最大深度
        if(l+r > MAX)
            MAX = l+r;
        // 求出左右子树最大深度+1,就是到自己的深度
        return max(l,r) +1 ;
    }
    int diameterOfBinaryTree(TreeNode* root) 
    {
        MAX = 0;
        depth(root);
        return MAX ;
    }
};

时间复杂度O(n),空间复杂度O(n):最坏情况下为链式结构;最好情况下为平衡二叉树:O(logN);

二、二叉树的层序遍历

点我直达~

思路:借助队列实现

  • 二叉树的层序遍历,实际上就是广度优先搜索,从根往下从左到右逐一遍历每一层的节点。
  • 所以我们需要借助一个队列q1,如果该根节点不为空,将该节点入队
  • 然后计算队列中的元素数量,即为这一层的节点个数
  • 先取出该队列的队头元素,然后将该节点的val值存入到顺序表v1中,如果该节点的左右子节点均不为空,则带动该节点的左右子节点入队,然后再将该节点出队,最后重新计算该队列的元素大小。
  • 注意:每遍历完一层,就需要将v1加入到专门存储顺序表的顺序表v之中。
  • 不断重复上述过程,直到该树遍历完为止。

具体代码如下:

class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) 
    {
        vector<vector<int>> v;
        queue <TreeNode*> q1;
        //入队
        if(!root)
            return v;
        q1.push(root);
        while(!q1.empty())
        {
            //存进顺序表前先计算当前队列有多少个元素。
            int size = q1.size();
            vector <int> v1;
            //存入顺序表
            while(size--)
            {
                TreeNode* root = q1.front();
                v1.push_back(root->val);
                if(root->left)
                    q1.push(root->left);
                if(root->right)
                    q1.push(root->right);
                q1.pop();
            }
            //然后将v1存入v中并刷新
            v.push_back(v1);
        }
        return v;
    }
};

时间复杂度O(n),遍历完每一个节点;空间复杂度O(n),当二叉树退化到链式结构时,深度为n,系统维护的辅助栈就为n的大小;最好情况为平衡二叉树时,高度logN,空间复杂度O(logN)

总结:

通过写这道二叉树的直径,越发觉得递归是一个比较神奇且难以理解的东西,还有这个最长路径,我是看了不下5次的答案才看懂最长路径为什么等于一个节点的左右子树的深度和。

二叉树的层序遍历,需要借助队列实现,这个还是比较简单的,相对于官方标记层序遍历是中等题,个人更认为二叉树的直径这道题是中等题。

相关文章
|
10天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
13天前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
35 5
|
16天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
24 0
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
21 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
25 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
28天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
13天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
14天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
15天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
14天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。