MySQL 优化 index merge(索引合并)引起的死锁分析(强烈推荐)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 生产环境出现死锁流水,通过查看死锁日志,看到造成死锁的是两条一样的update语句(只有where条件中的值不同),如下:

背景

生产环境出现死锁流水,通过查看死锁日志,看到造成死锁的是两条一样的update语句(只有where条件中的值不同),如下:

UPDATE test_table SET `status` = 1 WHERE `trans_id` = 'xxx1' AND `status` = 0;
UPDATE test_table SET `status` = 1 WHERE `trans_id` = 'xxx2' AND `status` = 0;

一开始比较费解,通过大量查询跟学习后,分析出了死锁形成的具体原理,特分享给大家,希望能帮助到遇到同样问题的朋友。

因为MySQL知识点较多,这里对很多名词不进行过多介绍,有兴趣的朋友,可以后续进行专项深入学习。

死锁日志

*** (1) TRANSACTION:
TRANSACTION 791913819, ACTIVE 0 sec starting index read, thread declared inside InnoDB 4999
mysql tables in use 3, locked 3
LOCK WAIT 4 lock struct(s), heap size 1184, 3 row lock(s)
MySQL thread id 462005230, OS thread handle 0x7f55d5da3700, query id 2621313306 x.x.x.x test_user Searching rows for update
UPDATE test_table SET `status` = 1 WHERE `trans_id` = 'xxx1' AND `status` = 0;
*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 110 page no 39167 n bits 1056 index `idx_status` of table `test`.`test_table` trx id 791913819 lock_mode X waiting
Record lock, heap no 495 PHYSICAL RECORD: n_fields 2; compact format; info bits 0
*** (2) TRANSACTION:
TRANSACTION 791913818, ACTIVE 0 sec starting index read, thread declared inside InnoDB 4999
mysql tables in use 3, locked 3
5 lock struct(s), heap size 1184, 4 row lock(s)
MySQL thread id 462005231, OS thread handle 0x7f55cee63700, query id 2621313305 x.x.x.x test_user Searching rows for update
UPDATE test_table SET `status` = 1 WHERE `trans_id` = 'xxx2' AND `status` = 0;
*** (2) HOLDS THE LOCK(S):
RECORD LOCKS space id 110 page no 39167 n bits 1056 index `idx_status` of table `test`.`test_table` trx id 791913818 lock_mode X
Record lock, heap no 495 PHYSICAL RECORD: n_fields 2; compact format; info bits 0
*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 110 page no 41569 n bits 88 index `PRIMARY` of table `test`.`test_table` trx id 791913818 lock_mode X locks rec but not gap waiting
Record lock, heap no 14 PHYSICAL RECORD: n_fields 30; compact format; info bits 0
*** WE ROLL BACK TRANSACTION (1)

简要分析下上边的死锁日志:

1、第一块内容(第1行到第9行)中,第6行为事务(1)执行的SQL语句,第7和第8行意思为事务(1)在等待 idx_status 索引上的X锁;

2、第二块内容(第11行到第19行)中,第16行为事务(2)执行的SQL语句,第17和第18行意思为事务(2)持有 idx_status 索引上的X锁;

3、第三块内容(第21行到第23行)的意思为,事务(2)在等待 PRIMARY 索引上的X锁。(but not gap指不是间隙锁)

4、最后一句的意思即为,MySQL将事务(1)进行了回滚操作。

表结构

CREATE TABLE `test_table` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `trans_id` varchar(21) NOT NULL,
  `status` int(11) NOT NULL,
  PRIMARY KEY (`id`),
  UNIQUE KEY `uniq_trans_id` (`trans_id`) USING BTREE,
  KEY `idx_status` (`status`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8

通过表结构可以看出,trans_id 列上有一个唯一索引 uniq_trans_id ,status 列上有一个普通索引 idx_status ,id列为主键索引 PRIMARY 。

InnoDB引擎中有两种索引:

  • 聚簇索引: 将数据存储与索引放到了一块,索引结构的叶子节点保存了行数据。
  • 辅助索引: 辅助索引叶子节点存储的是主键值,也就是聚簇索引的主键值。

主键索引 PRIMARY 就是聚簇索引,叶子节点中会保存数据。uniq_trans_id 索引和 idx_status 索引为辅助索引,叶子节点中保存的是主键值,也就是id列值。

当我们通过辅助索引查找行数据时,先通过辅助索引找到主键id,再通过主键索引进行二次查找(也叫回表),最终找到行数据。

执行计划

通过看执行计划,可以发现,update语句用到了索引合并,也就是这条语句既用到了 uniq_trans_id 索引,又用到了 idx_status 索引,Using intersect(uniq_trans_id,idx_status)的意思是通过两个索引获取交集。

为什么会用 index_merge(索引合并)

MySQL5.0之前,一个表一次只能使用一个索引,无法同时使用多个索引分别进行条件扫描。但是从5.1开始,引入了 index merge 优化技术,对同一个表可以使用多个索引分别进行条件扫描。

如执行计划中的语句:

UPDATE test_table SET `status` = 1 WHERE `trans_id` = '38' AND `status` = 0 ;

MySQL会根据 trans_id = ‘38’这个条件,可以利用 uniq_trans_id 索引找到叶子节点中保存的id值;同时会根据 status = 0这个条件,利用 idx_status 索引找到叶子节点中保存的id值;然后将找到的两组id值取交集,最终通过交集后的id回表,也就是通过 PRIMARY 索引找到叶子节点中保存的行数据。

这里可能很多人会有疑问了,uniq_trans_id 已经是一个唯一索引了,通过这个索引最终只能找到最多一条数据,那MySQL优化器为啥还要用两个索引取交集,再回表进行查询呢,这样不是多了一次 idx_status 索引查找的过程么。我们来分析一下这两种情况的执行过程。

第一种 只用uniq_trans_id索引 :

  • 根据 trans_id = ‘38’查询条件,利用uniq_trans_id 索引找到叶子节点中保存的id值;
  • 通过找到的id值,利用PRIMARY索引找到叶子节点中保存的行数据;
  • 再通过 status = 0 条件对找到的数据进行过滤。

第二种 用到索引合并 Using intersect(uniq_trans_id,idx_status)

  • 根据 trans_id = ‘38’ 查询条件,利用 uniq_trans_id 索引找到叶子节点中保存的id值;
  • 根据 status = 0 查询条件,利用 idx_status 索引找到叶子节点中保存的id值;
  • 将1/2中找到的id值取交集,然后利用PRIMARY索引找到叶子节点中保存的行数据

上边两种情况,主要区别在于,第一种是先通过一个索引把数据找到后,再用其它查询条件进行过滤;第二种是先通过两个索引查出的id值取交集,如果取交集后还存在id值,则再去回表将数据取出来。

当优化器认为第二种情况执行成本比第一种要小时,就会出现索引合并。(生产环境流水表中status = 0 的数据非常少,这也是优化器考虑用第二种情况的原因之一)。

为什么用了 index_merge 就死锁了

上面简要画了一下两个update事务加锁的过程,从图中可以看到,在 idx_status 索引和 PRIMARY (聚簇索引) 上面都存在重合交叉的部分,这样就为死锁造成了条件。

如此,当遇到以下时序时,就会出现死锁:

事务1等待事务2释放锁,事务2等待事务1释放锁,这样就造成了死锁。

MySQL检测到死锁后,会自动回滚代价更低的那个事务,如上边的时序图中,事务1持有的锁比事务2少,则MySQL就将事务1进行了回滚。

解决方案

一、从代码层面

  • where 查询条件中,只传出 trans_id ,将数据查询出来后,在代码层面判断 status 状态是否为0;
  • 使用 force index(uniq_trans_id) 强制查询语句使用 uniq_trans_id 索引;
  • where 查询条件后边直接用 id 字段,通过主键去更新。

二、从MySQL层面

  • 删除 idx_status 索引或者建一个包含这俩列的联合索引;
  • 将MySQL优化器的index merge优化关闭。
  • 本文就是愿天堂没有BUG给大家分享的内容,大家有收获的话可以分享下,想学习更多的话可以到微信公众号里找我,我等你哦。
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
16天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
117 9
|
13天前
|
存储 Oracle 关系型数据库
索引在手,查询无忧:MySQL索引简介
MySQL 是一款广泛使用的关系型数据库管理系统,在2024年5月的DB-Engines排名中得分1084,仅次于Oracle。本文介绍MySQL索引的工作原理和类型,包括B+Tree、Hash、Full-text索引,以及主键、唯一、普通索引等,帮助开发者优化查询性能。索引类似于图书馆的分类系统,能快速定位数据行,极大提高检索效率。
48 8
|
16天前
|
SQL 关系型数据库 MySQL
MySQL 窗口函数详解:分析性查询的强大工具
MySQL 窗口函数从 8.0 版本开始支持,提供了一种灵活的方式处理 SQL 查询中的数据。无需分组即可对行集进行分析,常用于计算排名、累计和、移动平均值等。基本语法包括 `function_name([arguments]) OVER ([PARTITION BY columns] [ORDER BY columns] [frame_clause])`,常见函数有 `ROW_NUMBER()`, `RANK()`, `DENSE_RANK()`, `SUM()`, `AVG()` 等。窗口框架定义了计算聚合值时应包含的行。适用于复杂数据操作和分析报告。
57 11
|
20天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
22 7
|
19天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化与慢查询优化:原理与实践
通过本文的介绍,希望您能够深入理解MySQL索引优化与慢查询优化的原理和实践方法,并在实际项目中灵活运用这些技术,提升数据库的整体性能。
50 5
|
8天前
|
存储 关系型数据库 MySQL
【MYSQL】 ——索引(B树B+树)、设计栈
索引的特点,使用场景,操作,底层结构,B树B+树,MYSQL设计栈
|
11天前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
38 3
|
11天前
|
安全 关系型数据库 MySQL
MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!
《MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!》介绍了MySQL中的三种关键日志:二进制日志(Binary Log)、重做日志(Redo Log)和撤销日志(Undo Log)。这些日志确保了数据库的ACID特性,即原子性、一致性、隔离性和持久性。Redo Log记录数据页的物理修改,保证事务持久性;Undo Log记录事务的逆操作,支持回滚和多版本并发控制(MVCC)。文章还详细对比了InnoDB和MyISAM存储引擎在事务支持、锁定机制、并发性等方面的差异,强调了InnoDB在高并发和事务处理中的优势。通过这些机制,MySQL能够在事务执行、崩溃和恢复过程中保持
38 3
|
11天前
|
SQL 关系型数据库 MySQL
数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog
《数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog》介绍了如何利用MySQL的二进制日志(Binlog)恢复误删除的数据。主要内容包括: 1. **启用二进制日志**:在`my.cnf`中配置`log-bin`并重启MySQL服务。 2. **查看二进制日志文件**:使用`SHOW VARIABLES LIKE 'log_%';`和`SHOW MASTER STATUS;`命令获取当前日志文件及位置。 3. **创建数据备份**:确保在恢复前已有备份,以防意外。 4. **导出二进制日志为SQL语句**:使用`mysqlbinlog`
52 2
|
24天前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
168 15