代码随想录 Day10 栈与队列 LeetCode T239 滑动窗口的最大值 T347 前K个高频元素

简介: 代码随想录 Day10 栈与队列 LeetCode T239 滑动窗口的最大值 T347 前K个高频元素

简要介绍一下单调队列和优先级队列的不同

  1. 元素顺序的处理:单调队列中,元素的顺序是单调的,也就是说,队列中的元素按照特定的单调性(递增或递减)排列。这种特性使得单调队列在处理一些问题时非常高效,例如寻找滑动窗口中的最大值或最小值。优先队列则根据元素的优先级进行排序,优先级高的元素先出队。优先队列并不保证元素的单调性。
  2. 入队和出队的操作:在单调队列中,元素可以从队尾入队,但出队操作只能在队首进行。这是因为单调队列需要保持其单调性,所以新加入的元素需要放在合适的位置以维持这种单调性。优先队列则允许元素从任意位置入队,出队操作则总是发生在优先级最高的元素上。
  3. 队列长度:单调队列的长度取决于输入数据的合法性,如果输入数据不满足单调性要求,那么队列长度就可能为0。而优先队列的长度则始终与输入数据的数量等同,因为所有输入数据都会被放入队列中,只是出队的顺序会根据优先级有所不同。

更详细的题解和思路:代码随想录 (programmercarl.com)

LeetCode T239 滑动窗口的最大值

题目链接:239. 滑动窗口最大值 - 力扣(LeetCode)

题目思路

这道题有点难度,我们如果使用暴力求解的话是跑不过的,暴力方式就是遍历全部的数组,再遍历每K个元素的滑动窗口,分别找出最大值放入返回数组,这里我们不使用这个方式.

我们使用单调队列而不是优先级队列

因为优先级队列只能将最大的元素选出来,而下一步操作

1.创建单调队列,定义add,peek,poll方法

poll方法:如果移除元素等于队列的出口元素,弹出该元素

add方法:如果队尾元素比传入元素小,删除该元素,保证前方元素都大于我要传入的元素,从而保证单调队列的单调性

peek方法:因为单调队列维护了队头的最大元素,peek用来返回队头元素

2.实现函数

首先创建单调队列,先将前k个元素传入单调队列,获取其最大值,对k到数组结束的元素进行以下处理,先poll前k个元素,加入新的元素,比较得到最大值,最后返回最大值数组即可.

代码实现

class MyQue{
    Deque<Integer> que = new LinkedList<>();
    void poll(int val)
    {
        if(!que.isEmpty() && val == que.peek())
        {
            que.poll();
        }
    }
    void  add(int val)
    {
        while(!que.isEmpty() && val>que.getLast())
        {
            que.removeLast();
        }
        que.add(val);
    }
    int peek()
    {
        return que.peek();
    }
}
class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        if(nums.length == 1)
        {
            return nums;
        }
        MyQue que = new MyQue();
        int len = nums.length;
        int num = 0;
        int[] res = new int[len-k+1];
        for(int i = 0;i<k;i++)
        {
            que.add(nums[i]);
        }
        res[num++] = que.peek();
        for(int i = k;i<len;i++)
        {
            que.poll(nums[i-k]);
            que.add(nums[i]);
            res[num++] = que.peek(); 
        }
        return res;
    }
}

LeetCode T347 前K个高频元素

题目链接:347. 前 K 个高频元素 - 力扣(LeetCode)

题目思路

首先创建一个map,key用来放置元素,value用来存放出现频率,这题我们就用到了优先级队列了,因为我们想用低于快排的时间复杂度解决问题,我们就只能使用大顶堆或小顶堆的数据结构,维护一个k个元素的堆来解决问题,最后将前k个元素依次pop出来即可.(这里为了简化代码使用了lambda表达式)

代码实现

class Solution {
    //解法1:基于大顶堆实现
    public int[] topKFrequent(int[] nums, int k) {
        Map<Integer,Integer> map = new HashMap<>();//key为数组元素值,val为对应出现次数
        for(int num:nums){
            map.put(num,map.getOrDefault(num,0)+1);
        }
        //在优先队列中存储二元组(num,cnt),cnt表示元素值num在数组中的出现次数
        //出现次数按从队头到队尾的顺序是从大到小排,出现次数最多的在队头(相当于大顶堆)
        PriorityQueue<int[]> pq = new PriorityQueue<>((pair1, pair2)->pair2[1]-pair1[1]);
        for(Map.Entry<Integer,Integer> entry:map.entrySet()){//大顶堆需要对所有元素进行排序
            pq.add(new int[]{entry.getKey(),entry.getValue()});
        }
        int[] ans = new int[k];
        for(int i=0;i<k;i++){//依次从队头弹出k个,就是出现频率前k高的元素
            ans[i] = pq.poll()[0];
        }
        return ans;
    }
}
//解法2:基于小顶堆实现
    public int[] topKFrequent2(int[] nums, int k) {
        Map<Integer,Integer> map = new HashMap<>();//key为数组元素值,val为对应出现次数
        for(int num:nums){
            map.put(num,map.getOrDefault(num,0)+1);
        }
        //在优先队列中存储二元组(num,cnt),cnt表示元素值num在数组中的出现次数
        //出现次数按从队头到队尾的顺序是从小到大排,出现次数最低的在队头(相当于小顶堆)
        PriorityQueue<int[]> pq = new PriorityQueue<>((pair1,pair2)->pair1[1]-pair2[1]);
        for(Map.Entry<Integer,Integer> entry:map.entrySet()){//小顶堆只需要维持k个元素有序
            if(pq.size()<k){//小顶堆元素个数小于k个时直接加
                pq.add(new int[]{entry.getKey(),entry.getValue()});
            }else{
                if(entry.getValue()>pq.peek()[1]){//当前元素出现次数大于小顶堆的根结点(这k个元素中出现次数最少的那个)
                    pq.poll();//弹出队头(小顶堆的根结点),即把堆里出现次数最少的那个删除,留下的就是出现次数多的了
                    pq.add(new int[]{entry.getKey(),entry.getValue()});
                }
            }
        }
        int[] ans = new int[k];
        for(int i=k-1;i>=0;i--){//依次弹出小顶堆,先弹出的是堆的根,出现次数少,后面弹出的出现次数多
            ans[i] = pq.poll()[0];
        }
        return ans;

简化版代码(避免一些api)

class Solution {
    public int[] topKFrequent(int[] nums, int k) {
        // 优先级队列,为了避免复杂 api 操作,pq 存储数组
        // lambda 表达式设置优先级队列从大到小存储 o1 - o2 为从大到小,o2 - o1 反之
        PriorityQueue<int[]> pq = new PriorityQueue<>((o1, o2) -> o1[1] - o2[1]);
        int[] res = new int[k]; // 答案数组为 k 个元素
        Map<Integer, Integer> map = new HashMap<>(); // 记录元素出现次数
        for(int num : nums) map.put(num, map.getOrDefault(num, 0) + 1);
        for(var x : map.entrySet()) { // entrySet 获取 k-v Set 集合
            // 将 kv 转化成数组
            int[] tmp = new int[2];
            tmp[0] = x.getKey();
            tmp[1] = x.getValue();
            pq.offer(tmp);
            if(pq.size() > k) {
                pq.poll();
            }
        }
        for(int i = 0; i < k; i ++) {
            res[i] = pq.poll()[0]; // 获取优先队列里的元素
        }
        return res;
    }
}
相关文章
|
21天前
【LeetCode 26】239.滑动窗口最大值
【LeetCode 26】239.滑动窗口最大值
28 1
|
21天前
【LeetCode 24】225.用队列实现栈
【LeetCode 24】225.用队列实现栈
9 0
|
22天前
|
算法
【LeetCode 23】232.用栈实现队列
【LeetCode 23】232.用栈实现队列
15 0
|
22天前
【LeetCode 04】滑动窗口法总结
【LeetCode 04】滑动窗口法总结
14 0
|
3月前
|
Python
【Leetcode刷题Python】剑指 Offer 30. 包含min函数的栈
本文提供了实现一个包含min函数的栈的Python代码,确保min、push和pop操作的时间复杂度为O(1)。
24 4
|
3月前
|
Python
【Leetcode刷题Python】946. 验证栈序列
LeetCode题目“946. 验证栈序列”的Python解决方案,通过模拟栈的压入和弹出操作来验证给定的两个序列是否能通过合法的栈操作得到。
25 6
|
3月前
|
Python
【Leetcode刷题Python】剑指 Offer 09. 用两个栈实现队列
使用两个栈实现队列的Python解决方案,包括初始化两个栈、实现在队列尾部添加整数的appendTail方法和在队列头部删除整数的deleteHead方法,以及相应的示例操作。
38 2
|
3月前
|
Python
【Leetcode刷题Python】641.循环双端队列
文章介绍了如何实现一个循环双端队列,包括其操作如插入、删除、获取队首和队尾元素,以及检查队列是否为空或已满,并提供了Python语言的实现代码。
21 0
|
3月前
|
存储 Python
【Leetcode刷题Python】239. 滑动窗口最大值
文章介绍了两种解决LeetCode上"滑动窗口最大值"问题的方法:使用大堆树和双向递减队列,提供了详细的解析和Python代码实现。
30 0
|
3月前
|
Python
【Leetcode刷题Python】232. 用栈实现队列
如何使用Python语言通过两个栈来实现队列的所有基本操作,包括入队(push)、出队(pop)、查看队首元素(peek)和判断队列是否为空(empty),并提供了相应的代码实现。
18 0