【数据结构与算法】树、二叉树的概念及结构(详解)(上)

简介: 【数据结构与算法】树、二叉树的概念及结构(详解)(上)

前言:

💥🎈个人主页:Dream_Chaser~ 🎈💥

✨✨专栏:http://t.csdn.cn/oXkBa

⛳⛳本篇内容:c语言数据结构--树以及二叉树的概念与结构

845bf63bbde14ab4a986ae8415638584.gif


一.树概念及结构


1.树的概念

       树是一种 非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。 把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的

8a4bad0388c540abb70a488503448a3d.png

1.1树与非树

d0fe9777c9544f049797ea820c7679ba.png

树的特点:

空树 -- 结点数为0的树

非空树:

  • 有一个特殊的结点,称为根结点,根节点没有前驱结点(没有父节点)

下面的两点一起理解:

  • 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  • 因此,树是递归定义的。

可以理解为:

由根节点指向了各子树,子树的双亲节点又可以作为根节点,指向它们的孩子节点

e3569a42401e4201bf287a4d9586b8bf.png

非树(图)的特点:

1.除了根结点外,每个结点有且仅有一个父结点;

a78694585a90486b9f4695d8db59bb51.png

2.子树是不相交的

以下的这个结构是图(允许相交),不是树

b36ddfb74f6947cebf04764380170243.png

注意:树形结构中,子树之间不能有交集,否则就不是树形结构

3.一棵N个结点的树有N-1条边

9a636e0a4d604068a31bd2110b05a6e4.png

1.2 关于树的细致概念

4ffc793c5e54426ea73af1b07d947d7b.png

下面有个✅的是比较重要的知识点

✅节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6

✅叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点

✅非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点

✅双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点

✅孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点

✅兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点

树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6

节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

✅树的高度或深度:树中节点的最大层次; 如上图:树的高度为4

堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点

✅节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

✅子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙

森林:由m(m>0)棵互不相交的树的集合称为森林

对各知识点的进一步画图解析:

  • 节点的度:与该节点直接相连的边的数量

8ac18d3ddddd4833a80d0d0f75237ba8.png

  • 叶节点(终端节点):度为0的节点

fd7c28c5af0947fdaba425d0eb226725.png

  • 分支节点(非终端节点):度不为0的节点

5a6896f4845f4b59bb7965232dc17eee.png

  • 父节点(双亲节点):一个节点的直接前驱就是它的父节点

5eb6cd4c7b444a6b9591f052e9dfa0a7.png

  • 子节点(孩子节点):一个节点的直接后继就是它的子节点

9df667166d614ab6a6fcd91389eb33e2.png

  • 兄弟节点:由同一个父节点生出来的都是互为兄弟节点

bff9cdbe5080402d86bf81ff1a2d35cf.png

  • 树的度:一棵树中,最大的节点的度称为树的度
  • 节点的层次:从上往下数,从根开始定义起,根为第1层,根的子节点为第2层,以此类推;(默认是从1开始)
  • 树的高度(深度):树中节点的最大层次,下图的高度就是4

01d25a836e91413fb8d9d6e1f1ff780b.png

  • 节点的高度:从下往上数

95d28844f0fb4429ae4cd24b5c1f4107.png

  • 堂兄弟节点双亲在同一层的节点互为堂兄弟

75f367877e3b439c80b14670890fc335.png

  • 节点的祖先指从该节点向上追溯到根节点的路径上的所有节点,包括该节点的父节点、父节点的父节点,以此类推,直到达到根节点为止。

ec0c238226244c238dcb5aadc8de3da9.png

  • 子孙从该节点向下追溯到所有末端节点的路径上的所有节点,包括该节点的直接子节点、子节点的子节点,以此类推,直到达到叶子节点为止。

42f6adff97544e4d8428d200ee77e4ba.png

  • 森林:是由多个不相交的树组成的集合(并查集)
相关文章
|
2月前
|
算法
数据结构之博弈树搜索(深度优先搜索)
本文介绍了使用深度优先搜索(DFS)算法在二叉树中执行遍历及构建链表的过程。首先定义了二叉树节点`TreeNode`和链表节点`ListNode`的结构体。通过递归函数`dfs`实现了二叉树的深度优先遍历,按预序(根、左、右)输出节点值。接着,通过`buildLinkedList`函数根据DFS遍历的顺序构建了一个单链表,展示了如何将树结构转换为线性结构。最后,讨论了此算法的优点,如实现简单和内存效率高,同时也指出了潜在的内存管理问题,并分析了算法的时间复杂度。
58 0
|
2月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
71 5
|
2月前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
109 16
|
2月前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
42 2
|
2月前
|
算法
数据结构之文件系统模拟(树数据结构)
本文介绍了文件系统模拟及其核心概念,包括树状数据结构、节点结构、文件系统类和相关操作。通过构建虚拟环境,模拟文件的创建、删除、移动、搜索等操作,展示了文件系统的基本功能和性能。代码示例演示了这些操作的具体实现,包括文件和目录的创建、移动和删除。文章还讨论了该算法的优势和局限性,如灵活性高但节点移除效率低等问题。
65 0
|
3月前
|
Java C++
【数据结构】探索红黑树的奥秘:自平衡原理图解及与二叉查找树的比较
本文深入解析红黑树的自平衡原理,介绍其五大原则,并通过图解和代码示例展示其内部机制。同时,对比红黑树与二叉查找树的性能差异,帮助读者更好地理解这两种数据结构的特点和应用场景。
44 0
|
2月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
243 9
|
2月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
40 1
|
2月前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
2月前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。