OR-tools求解器使用介绍(一)

简介: OR-tools求解器使用介绍(一)

 Or-tools是谷歌人工智能系列的运筹优化包,非常良心的开源工具包了。OR-Tools是一个用于优化的开源软件套件,专为解决世界上最棘手的车辆路线问题、流程优化、整数和线性规划以及约束规划等问题。

业内使用举例

算法在哈罗顺风车中的应用

原文链接:

https://mp.weixin.qq.com/s/VZjEAzGkrhnEtAK2INNSgg

仿真软件Anylogic培训课程 原文链接:

https://mp.weixin.qq.com/s/wueSqQEwEqg9Cnw9zRSPoQ

基础使用介绍

1.线性规划

约束条件:

目标函数:max(3x+4y)

#约束规划
from ortools.linear_solver import pywraplp
def LinearProgrammingExample():
    """Linear programming sample."""
    # Instantiate a Glop solver, naming it LinearExample.
    solver = pywraplp.Solver.CreateSolver('GLOP')
    # Create the two variables and let them take on any non-negative value.
    x = solver.NumVar(0, solver.infinity(), 'x')
    y = solver.NumVar(0, solver.infinity(), 'y')
    print('Number of variables =', solver.NumVariables())
    # Constraint 0: x + 2y <= 14.
    solver.Add(x + 2 * y <= 14.0)
    # Constraint 1: 3x - y >= 0.
    solver.Add(3 * x - y >= 0.0)
    # Constraint 2: x - y <= 2.
    solver.Add(x - y <= 2.0)
    print('Number of constraints =', solver.NumConstraints())
    # Objective function: 3x + 4y.
    solver.Maximize(3 * x + 4 * y)
    # Solve the system.
    status = solver.Solve()
    if status == pywraplp.Solver.OPTIMAL:
        print('Solution:')
        print('Objective value =', solver.Objective().Value())
        print('x =', x.solution_value())
        print('y =', y.solution_value())
    else:
        print('The problem does not have an optimal solution.')
    print('\nAdvanced usage:')
    print('Problem solved in %f milliseconds' % solver.wall_time())
    print('Problem solved in %d iterations' % solver.iterations())
LinearProgrammingExample()

2.背包问题

有50件商品, 价格如下:360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28,87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276,312

体积如下:7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0,42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71,3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13

背包最大装载体积为850

from ortools.algorithms import pywrapknapsack_solver
def main():
    # Create the solver.
    solver = pywrapknapsack_solver.KnapsackSolver(
        pywrapknapsack_solver.KnapsackSolver.
        KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, 'KnapsackExample')
    values = [
        360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
        78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28,
        87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276,
        312
    ]
    weights = [[
        7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0,
        42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71,
        3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13
    ]]
    capacities = [850]
    solver.Init(values, weights, capacities)
    computed_value = solver.Solve()
    packed_items = []
    packed_weights = []
    total_weight = 0
    print('Total value =', computed_value)
    for i in range(len(values)):
        if solver.BestSolutionContains(i):
            packed_items.append(i)
            packed_weights.append(weights[0][i])
            total_weight += weights[0][i]
    print('Total weight:', total_weight)
    print('Packed items:', packed_items)
    print('Packed_weights:', packed_weights)
if __name__ == '__main__':
    main()

  未完待续.....

目录
相关文章
|
算法
OR-tools求解器使用介绍(二)
OR-tools求解器使用介绍(二)
644 0
|
决策智能
Or-tools调用求解器介绍(三)
Or-tools调用求解器介绍(三)
403 0
|
8月前
|
达摩院 Linux 决策智能
阿里达摩院MindOpt优化求解器-月刊(2024年3月)
### MindOpt 优化求解器月刊(2024年3月) - 发布亮点:MAPL建模语言升级至V2.4,支持云上无安装使用和向量化建模语法。 - 新增功能:Linux用户可本地安装`maplpy`,并支持Python与MAPL混编。 - 实例分享:介绍背包问题的组合优化,展示如何在限定容量下最大化收益。 - 用户投稿:探讨机票超售时的最优调派策略,以最小化赔付成本。 - 加入互动:官方钉钉群32451444,更多资源及。 [查看详细内容](https://opt.aliyun.com/)
133 0
阿里达摩院MindOpt优化求解器-月刊(2024年3月)
|
8月前
|
达摩院 Linux API
阿里达摩院MindOpt求解器V1.1新增C#接口
阿里达摩院MindOpt求解器发布最新版本V1.1,增加了C#相关API和文档。优化求解器产品是求解优化问题的专业计算软件,可广泛各个行业。阿里达摩院从2019年投入自研MindOpt优化求解器,截止目前经历27个版本的迭代,取得了多项国内和国际第一的成绩。就在上个月,2023年12月,在工信部产业发展促进中心等单位主办的首届能源电子产业创新大赛上,MindOpt获得电力用国产求解器第一名。本文将为C#开发者讲述如何下载安装MindOpt和C#案例源代码。
255 3
阿里达摩院MindOpt求解器V1.1新增C#接口
|
8月前
|
达摩院 开发者 容器
「达摩院MindOpt」优化形状切割问题(MILP)
在制造业,高效地利用材料不仅是节约成本的重要环节,也是可持续发展的关键因素。无论是在金属加工、家具制造还是纺织品生产中,原材料的有效利用都直接影响了整体效率和环境影响。
「达摩院MindOpt」优化形状切割问题(MILP)
|
8月前
|
机器学习/深度学习 达摩院
阿里达摩院MindOpt优化求解器-月刊(2024年4月)
【摘要】2024.04.30,阿里云发布了MindOpt优化求解器的新商品和功能。MindOpt现在已上架,提供超低价零售求解器,支持按需购买,可在阿里云平台上直接购买联网或不联网License。新版本V1.2发布,提升MILP性能,并增加PostScaling参数。此外,MindOpt Studio推出租户定制版,正处于邀测阶段。同时分享了使用MindOpt解决二分类SVM问题的案例。更多内容,可访问相关链接。
171 0
|
5月前
|
达摩院 供应链 安全
光储荷经济性调度问题【数学规划的应用(含代码)】阿里达摩院MindOpt
本文介绍使用MindOpt工具优化光储荷经济性调度的数学规划问题。光储荷经济性调度技术旨在最大化能源利用率和经济效益,应用场景包括分布式光伏微网、家庭能源管理系统、商业及工业用电、电力市场参与者等。文章详细阐述了如何通过数学规划方法解决虚拟电厂中的不确定性与多目标优化难题,并借助MindOpt云建模平台、MindOpt APL建模语言及MindOpt优化求解器实现问题建模与求解。最终案例展示了如何通过合理充放电策略减少37%的电费支出,实现经济与环保双重效益。读者可通过提供的链接获取完整源代码。
|
5月前
|
达摩院 BI 索引
切割问题【数学规划的应用(含代码)】阿里达摩院MindOpt
本文主要讲述了使用MindOpt工具对切割问题进行优化的过程与实践。切割问题是指从一维原材料(如木材、钢材等)中切割出特定长度的零件以满足不同需求,同时尽可能减少浪费的成本。文章通过实例详细介绍了如何使用MindOpt云上建模求解平台及其配套的MindOpt APL建模语言来解决此类问题,包括数学建模、代码实现、求解过程及结果分析等内容。此外,还讨论了一维切割问题的应用场景,并对其进行了扩展,探讨了更复杂的二维和三维切割问题。通过本文的学习,读者能够掌握利用MindOpt工具解决实际切割问题的方法和技术。
|
5月前
|
达摩院 算法 安全
智慧楼宇多目标调度问题【数学规划的应用(含代码)】阿里达摩院MindOpt
本文探讨了使用MindOpt工具优化智慧楼宇的多目标调度问题,特别是在虚拟电厂场景下的应用。智慧楼宇通过智能化技术综合考虑能耗、舒适度等多目标,实现楼宇设备的有效管理和调度。虚拟电厂作为多能源聚合体,能够参与电力市场,提供调峰、调频等辅助服务。文章介绍了如何使用MindOpt云上建模求解平台及MindOpt APL建模语言对楼宇多目标调度问题进行数学建模和求解,旨在通过优化储能设备的充放电操作来最小化用电成本、碳排放成本和功率变化成本,从而实现经济、环保和电网稳定的综合目标。最终结果显示,在使用储能设备的情况下,相比不使用储能设备的情形,成本节约达到了约48%。
|
5月前
|
达摩院 供应链 JavaScript
网络流问题--仓储物流调度【数学规划的应用(含代码)】阿里达摩院MindOpt
本文通过使用MindOpt工具优化仓储物流调度问题,旨在提高物流效率并降低成本。首先,通过考虑供需匹配、运输时间与距离、车辆容量、仓库储存能力等因素构建案例场景。接着,利用数学规划方法,包括线性规划和网络流问题,来建立模型。在网络流问题中,通过定义节点(资源)和边(资源间的关系),确保流量守恒和容量限制条件下找到最优解。文中还详细介绍了MindOpt Studio云建模平台和MindOpt APL建模语言的应用,并通过实例展示了如何声明集合、参数、变量、目标函数及约束条件,并最终解析了求解结果。通过这些步骤,实现了在满足各仓库需求的同时最小化运输成本的目标。