Or-tools是谷歌人工智能系列的运筹优化包,非常良心的开源工具包了。OR-Tools是一个用于优化的开源软件套件,专为解决世界上最棘手的车辆路线问题、流程优化、整数和线性规划以及约束规划等问题。
业内使用举例
算法在哈罗顺风车中的应用
原文链接:
https://mp.weixin.qq.com/s/VZjEAzGkrhnEtAK2INNSgg
仿真软件Anylogic培训课程 原文链接:
https://mp.weixin.qq.com/s/wueSqQEwEqg9Cnw9zRSPoQ
基础使用介绍
1.线性规划
约束条件:
目标函数:max(3x+4y)
#约束规划 from ortools.linear_solver import pywraplp def LinearProgrammingExample(): """Linear programming sample.""" # Instantiate a Glop solver, naming it LinearExample. solver = pywraplp.Solver.CreateSolver('GLOP') # Create the two variables and let them take on any non-negative value. x = solver.NumVar(0, solver.infinity(), 'x') y = solver.NumVar(0, solver.infinity(), 'y') print('Number of variables =', solver.NumVariables()) # Constraint 0: x + 2y <= 14. solver.Add(x + 2 * y <= 14.0) # Constraint 1: 3x - y >= 0. solver.Add(3 * x - y >= 0.0) # Constraint 2: x - y <= 2. solver.Add(x - y <= 2.0) print('Number of constraints =', solver.NumConstraints()) # Objective function: 3x + 4y. solver.Maximize(3 * x + 4 * y) # Solve the system. status = solver.Solve() if status == pywraplp.Solver.OPTIMAL: print('Solution:') print('Objective value =', solver.Objective().Value()) print('x =', x.solution_value()) print('y =', y.solution_value()) else: print('The problem does not have an optimal solution.') print('\nAdvanced usage:') print('Problem solved in %f milliseconds' % solver.wall_time()) print('Problem solved in %d iterations' % solver.iterations()) LinearProgrammingExample()
2.背包问题
有50件商品, 价格如下:360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28,87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276,312
体积如下:7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0,42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71,3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13
背包最大装载体积为850
from ortools.algorithms import pywrapknapsack_solver def main(): # Create the solver. solver = pywrapknapsack_solver.KnapsackSolver( pywrapknapsack_solver.KnapsackSolver. KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, 'KnapsackExample') values = [ 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312 ] weights = [[ 7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13 ]] capacities = [850] solver.Init(values, weights, capacities) computed_value = solver.Solve() packed_items = [] packed_weights = [] total_weight = 0 print('Total value =', computed_value) for i in range(len(values)): if solver.BestSolutionContains(i): packed_items.append(i) packed_weights.append(weights[0][i]) total_weight += weights[0][i] print('Total weight:', total_weight) print('Packed items:', packed_items) print('Packed_weights:', packed_weights) if __name__ == '__main__': main()
未完待续.....