如何通过阿里达摩院MindOpt获得MILP多个解

简介: 在2024年1月达摩院新发布的MindOpt 优化求解器V1.1.0版本中,新增加了一个"MIP/SolutionNumber"参数,可以用于获取MILP多个解。有些业务里,会想要找到更多的可行解,目标值不一定最优,用于给业务指导。本篇案例将讲解如何使用此功能。

MindOpt V1.1 新增"MIP/SolutionNumber"参数


在本月达摩院新发布的MindOpt 优化求解器V1.1.0版本,新增加了一个"MIP/SolutionNumber"参数,可以用于获取MILP多个解。

image.png


优化求解器产品是求解优化问题的专业计算软件,属于底层数学软件,可以用于各个行业。对优化求解器有更多好奇心的初学者,可查阅小编之前的文章《什么是优化技术?给算法小白同学的快速讲解和上手文》(或公众号精排版)。

在默认模式使用时,求解器最后只会给出一个解,对应求解到的最优目标值。有些业务里,会想要找到更多的可行解,目标值不一定最优,用于给业务指导。此次MindOpt更新的MILP参数会产生多个可行解。下载和安装MindOpt软件>>

使用方法

想要多个结果,设置的相关参数:

  • MIP/SolutionPoolSize (int)   设置解缓存池的最大容量。求解前设置。

计算完成后,从属性(Attributes)中获取结果的属性:

  • SolCount (int)  找到的较优解数量。
  • Xn (double) 由参数 MIP/SolutionNumber 指定的较优解。
  • 关联参数:MIP/SolutionPoolSize (int)   设置获取较优解的下标。设置后,通过获取属性Xn得到该较优解。求解完成后使用。

比如求解完成后,获取第k个solution的方式:用户设置<参数> SolutionNumber = k (0 <= k < SolCount),设置完成之后<属性>Xn即为对应的suboptimal solution的值。

示例代码


示例代码如下:

  • line2是索引的MindOpt安装目录里面的示例MILP模型文件
  • line6是设置候选解池数目
  • line10是求解的最优目标值
  • line14-20 是由差到优的结果的获取方式
frommindoptpyimport*file="~/mindopt/1.1.0/examples/data/pg.mps.gz"m=read(file)
vars=m.getVars()
expr=m.getObjective()
m.setParam(MDO.Param.MIP_SolutionPoolSize, 10)
m.optimize()
print("Solution count =", m.SolCount)
print("Problem status =", m.status)
if (m.status==MDO.Status.OPTIMAL):
print("Best Solution obj =", m.objval)
print(str([var.Xforvarinvars[:20]]), "...")
print("Suboptimal solutions from worst to best:")
foriinrange(m.SolCount):
m.setParam(MDO.Param.MIP_SolutionNumber, i)
objval=m.objConstforiinrange(expr.size()):
objval+=expr.getCoeff(i) *expr.getVar(i).Xnprint("  suboptimal obj = ", objval)
print("  "+str([round(var.Xn,1) forvarinvars[:20]]), "...")


输出的结果日志摘取部分如下:

..................
Set parameter MIP/SolutionPoolSize to value 10Model summary.
- Num. variables     : 2700- Num. constraints   : 125- Num. nonzeros      : 5200- Num. integer vars. : 100- Bound range        : [1.0e+00,2.5e+03]
- Objective range    : [1.0e+00,1.4e+02]
..................
- Solution pool    : 10Branch-and-cut method terminated. Time : 30.305s
..................
Solution count =10Problem status =1Best Solution obj =-8674.342607117027
[1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0] ...
Suboptimal solutions from worst to best:
Set parameter MIP/SolutionNumber to value 0  suboptimal obj =7009.0
  [0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ...
Set parameter MIP/SolutionNumber to value 1  suboptimal obj =6937.0
  [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ...
Set parameter MIP/SolutionNumber to value 2  suboptimal obj =-3661.011498595497
  [1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ...
Set parameter MIP/SolutionNumber to value 3  suboptimal obj =-3987.192860239571
  [1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0] ...
Set parameter MIP/SolutionNumber to value 4  suboptimal obj =-4162.448499031024
  [1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ...
Set parameter MIP/SolutionNumber to value 5  suboptimal obj =-8553.380870759038
  [1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0] ...
Set parameter MIP/SolutionNumber to value 6  suboptimal obj =-8637.723513904024
  [1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0] ...
Set parameter MIP/SolutionNumber to value 7  suboptimal obj =-8653.94037031042
  [1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0] ...
Set parameter MIP/SolutionNumber to value 8  suboptimal obj =-8665.322015044003
  [1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, -0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0] ...
Set parameter MIP/SolutionNumber to value 9  suboptimal obj =-8666.843995053305
  [1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0] ...
目录
相关文章
|
4月前
|
达摩院 供应链 安全
光储荷经济性调度问题【数学规划的应用(含代码)】阿里达摩院MindOpt
本文介绍使用MindOpt工具优化光储荷经济性调度的数学规划问题。光储荷经济性调度技术旨在最大化能源利用率和经济效益,应用场景包括分布式光伏微网、家庭能源管理系统、商业及工业用电、电力市场参与者等。文章详细阐述了如何通过数学规划方法解决虚拟电厂中的不确定性与多目标优化难题,并借助MindOpt云建模平台、MindOpt APL建模语言及MindOpt优化求解器实现问题建模与求解。最终案例展示了如何通过合理充放电策略减少37%的电费支出,实现经济与环保双重效益。读者可通过提供的链接获取完整源代码。
|
4月前
|
达摩院 BI 索引
切割问题【数学规划的应用(含代码)】阿里达摩院MindOpt
本文主要讲述了使用MindOpt工具对切割问题进行优化的过程与实践。切割问题是指从一维原材料(如木材、钢材等)中切割出特定长度的零件以满足不同需求,同时尽可能减少浪费的成本。文章通过实例详细介绍了如何使用MindOpt云上建模求解平台及其配套的MindOpt APL建模语言来解决此类问题,包括数学建模、代码实现、求解过程及结果分析等内容。此外,还讨论了一维切割问题的应用场景,并对其进行了扩展,探讨了更复杂的二维和三维切割问题。通过本文的学习,读者能够掌握利用MindOpt工具解决实际切割问题的方法和技术。
|
4月前
|
达摩院 算法 安全
智慧楼宇多目标调度问题【数学规划的应用(含代码)】阿里达摩院MindOpt
本文探讨了使用MindOpt工具优化智慧楼宇的多目标调度问题,特别是在虚拟电厂场景下的应用。智慧楼宇通过智能化技术综合考虑能耗、舒适度等多目标,实现楼宇设备的有效管理和调度。虚拟电厂作为多能源聚合体,能够参与电力市场,提供调峰、调频等辅助服务。文章介绍了如何使用MindOpt云上建模求解平台及MindOpt APL建模语言对楼宇多目标调度问题进行数学建模和求解,旨在通过优化储能设备的充放电操作来最小化用电成本、碳排放成本和功率变化成本,从而实现经济、环保和电网稳定的综合目标。最终结果显示,在使用储能设备的情况下,相比不使用储能设备的情形,成本节约达到了约48%。
|
4月前
|
达摩院 供应链 JavaScript
网络流问题--仓储物流调度【数学规划的应用(含代码)】阿里达摩院MindOpt
本文通过使用MindOpt工具优化仓储物流调度问题,旨在提高物流效率并降低成本。首先,通过考虑供需匹配、运输时间与距离、车辆容量、仓库储存能力等因素构建案例场景。接着,利用数学规划方法,包括线性规划和网络流问题,来建立模型。在网络流问题中,通过定义节点(资源)和边(资源间的关系),确保流量守恒和容量限制条件下找到最优解。文中还详细介绍了MindOpt Studio云建模平台和MindOpt APL建模语言的应用,并通过实例展示了如何声明集合、参数、变量、目标函数及约束条件,并最终解析了求解结果。通过这些步骤,实现了在满足各仓库需求的同时最小化运输成本的目标。
|
7月前
|
达摩院 开发者 容器
「达摩院MindOpt」优化形状切割问题(MILP)
在制造业,高效地利用材料不仅是节约成本的重要环节,也是可持续发展的关键因素。无论是在金属加工、家具制造还是纺织品生产中,原材料的有效利用都直接影响了整体效率和环境影响。
「达摩院MindOpt」优化形状切割问题(MILP)
|
7月前
|
人工智能 自然语言处理 达摩院
MindOpt 云上建模求解平台:多求解器协同优化
数学规划是一种数学优化方法,主要是寻找变量的取值在特定的约束情况下,使我们的决策目标得到一个最大或者最小值的决策。
|
2月前
|
机器学习/深度学习 算法 数据可视化
如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
28 1
|
5月前
|
人工智能 算法 调度
优化问题之如何选择合适的优化求解器
优化问题之如何选择合适的优化求解器
|
5月前
|
调度 决策智能
优化问题之优化求解器有哪些主要的评估特性
优化问题之优化求解器有哪些主要的评估特性
|
达摩院 调度
使用达摩院MindOpt优化交通调度_最大化通行量—线性规划问题
在数学规划中,网络流问题是指一类基于网络模型的流量分配问题。网络流问题的目标是在网络中分配资源,使得网络的流量满足一定的限制条件,并且使得某些目标函数最小或最大化。网络流问题通常涉及一个有向图,图中每个节点表示一个资源,每条边表示资源之间的关系。边上有一个容量值,表示该边上最多可以流动的资源数量。流量从源节点开始流出,经过一系列中间节点,最终到达汇节点。在这个过程中,需要遵守一定的流量守恒和容量限制条件。