剑指offer(C++)-JZ85:连续子数组的最大和(二)(算法-动态规划)

简介: 剑指offer(C++)-JZ85:连续子数组的最大和(二)(算法-动态规划)

题目描述:

输入一个长度为n的整型数组array,数组中的一个或连续多个整数组成一个子数组,找到一个具有最大和的连续子数组。


1.子数组是连续的,比如[1,3,5,7,9]的子数组有[1,3],[3,5,7]等等,但是[1,3,7]不是子数组


2.如果存在多个最大和的连续子数组,那么返回其中长度最长的,该题数据保证这个最长的只存在一个


3.该题定义的子数组的最小长度为1,不存在为空的子数组,即不存在[]是某个数组的子数组


4.返回的数组不计入空间复杂度计算


数据范围:


1<=n<=105


−100<=a[i]<=100


要求:时间复杂度O(n),空间复杂度O(n)


进阶:时间复杂度O(n),空间复杂度O(1)

示例:

输入:

[1,2,-3,4,-1,1,-3,2]


返回值:

[1,2,-3,4,-1,1]


说明:

经分析可知,最大子数组的和为4,有[4],[4,-1,1],[1,2,-3,4],[1,2,-3,4,-1,1],故返回其中长度最长的[1,2,-3,4,-1,1]

解题思路:

本题考察算法-动态规划算法的使用。用两种动态规划的解法。


解法一:使用常规的动态规划思路:用一个vector-dp存储到各个下标时的最大连续子数组和,进行一轮遍历,若dp[i-1]+array[i]比array[i]大,说明到前一下标为止的最大连续子数组,可以把当前下标纳入到该连续子数组中;反之,则以array[i]为新的起点,继续向后扩展连续子数组;与此同时,动态刷新最大值maxsum。在上述过程中,注意还要刷新连续子数组的左右区间位置信息。


解法二:对空间复杂度进行优化:常规解法使用vector来记录各个下标的最大连续子数组和,但本题目的要求并没有需要读取vector中信息,因此该vector可以优化掉。用x代替dp[i-1],相当于当前下标前的最大连续子数组和,其他的同解法一一致,这样vector的空间就节省下来了。在上述过程中,注意还要刷新连续子数组的左右区间位置信息。

测试代码:

解法一:动态规划

class Solution {
  public:
    vector<int> FindGreatestSumOfSubArray(vector<int>& array) {
        vector<int> res;
        // 记录到下标i为止的最大连续子数组和
        vector<int> dp(array.size(), 0);
        dp[0]= array[0];
        int maxsum = dp[0];
        // 记录当前连续子数组的左右区间
        int left = 0, right = 0;
        // 记录最大连续子数组的左右区间
        int maxl = 0, maxr = 0;
        for (int i = 1; i < array.size(); i++) {
            right++;
            // 确定到当前下标为止时的连续子数组和最大值
            dp[i] = max(dp[i - 1] + array[i], array[i]);
            // 若当前值本身超过已知最大连续子数组,则刷新左区间位置
            if (dp[i - 1] + array[i] < array[i]){
                left = right;
            }
            // 刷新最大值
            // x如果比之前的最大值大,则刷新
            // 一样大时,还要判断下左右区间的长度,取长度大的刷新
            if (dp[i]  > maxsum || (dp[i]  == maxsum && (right - left + 1) > (maxr - maxl + 1))) {
                maxsum = dp[i] ;
                maxl = left;
                maxr = right;
            }
        }
        // 获取最大且最长的连续子数组
        for (int i = maxl; i <= maxr; i++)
            res.push_back(array[i]);
        return res;
    }
};

解法二:动态规划进阶

class Solution {
  public:
    vector<int> FindGreatestSumOfSubArray(vector<int>& array) {
        vector<int> res;
        // 记录到下标i为止的最大连续子数组和
        int x = array[0];
        int maxsum = x;
        // 记录当前连续子数组的左右区间
        int left = 0, right = 0;
        // 记录最大连续子数组的左右区间
        int maxl = 0, maxr = 0;
        for (int i = 1; i < array.size(); i++) {
            right++;
            // 确定到当前下标为止时的连续子数组和最大值
            // 若当前值本身超过已知最大连续子数组,则刷新左区间位置
            if (x + array[i] < array[i]){
                left = right;
                x = array[i];
            }
            else{
                x = x + array[i];
            }
            // 刷新最大值
            // x如果比之前的最大值大,则刷新
            // 一样大时,还要判断下左右区间的长度,取长度大的刷新
            if (x > maxsum || (x == maxsum && (right - left + 1) > (maxr - maxl + 1))) {
                maxsum = x;
                maxl = left;
                maxr = right;
            }
        }
        // 获取最大且最长的连续子数组
        for (int i = maxl; i <= maxr; i++)
            res.push_back(array[i]);
        return res;
    }
};


相关文章
|
2天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
18 2
|
28天前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
56 2
动态规划算法学习三:0-1背包问题
|
28天前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
59 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
28天前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
112 0
动态规划算法学习二:最长公共子序列
|
30天前
|
存储 算法 C++
高精度算法(加、减、乘、除,使用c++实现)
高精度算法(加、减、乘、除,使用c++实现)
339 0
高精度算法(加、减、乘、除,使用c++实现)
|
27天前
|
算法 数据处理 C++
c++ STL划分算法;partition()、partition_copy()、stable_partition()、partition_point()详解
这些算法是C++ STL中处理和组织数据的强大工具,能够高效地实现复杂的数据处理逻辑。理解它们的差异和应用场景,将有助于编写更加高效和清晰的C++代码。
20 0
|
28天前
|
存储 算法
动态规划算法学习一:DP的重要知识点、矩阵连乘算法
这篇文章是关于动态规划算法中矩阵连乘问题的详解,包括问题描述、最优子结构、重叠子问题、递归方法、备忘录方法和动态规划算法设计的步骤。
94 0
|
1月前
|
存储 算法 决策智能
【算法】博弈论(C/C++)
【算法】博弈论(C/C++)
|
1月前
|
存储 算法 C++
【算法】哈希映射(C/C++)
【算法】哈希映射(C/C++)
|
1月前
|
机器学习/深度学习 人工智能 算法
【算法】最长公共子序列(C/C++)
【算法】最长公共子序列(C/C++)
下一篇
无影云桌面