m基于FPGA的GFDM调制解调系统verilog实现,包含testbench仿真测试文件

简介: m基于FPGA的GFDM调制解调系统verilog实现,包含testbench仿真测试文件

1.算法仿真效果
本系统进行了Vivado2019.2平台的开发,测试结果如下:

5714de3ea2609ef09353125f0a93ffc6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

GFDM调制信号放大:

0a2e40785f90399a264108c1b1ebbbc3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

GFDM解调信号放大:

539a4ce6f102bdbacb6dc840a6758843_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

系统RTL结构图如下:
13111a8017fe0db7ba58fe21135f7fd3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
随着通信技术的不断发展,人们对数据传输速率和频谱效率的要求越来越高。为了满足这些需求,一种名为广义频分复用(GFDM)的新型调制技术应运而生。GFDM具有灵活的子载波间隔和符号时间长度,能够在各种复杂环境中实现高效的数据传输。

   GFDM是一种基于子载波的多载波调制技术,通过对子载波进行调制和解调来实现数据传输。与传统的正交频分复用(OFDM)相比,GFDM具有更灵活的子载波间隔和符号时间长度,可以更好地适应不同的信道环境。

2.1 子载波调制
在GFDM中,每个子载波可以采用不同的调制方式,如BPSK、QPSK、16QAM等。调制符号在子载波上进行传输,子载波的间隔可以根据需要进行调整。调制符号在每个子载波上的传输时间称为符号时间,符号时间的长度也可以根据需要进行调整。

   在GFDM中,每个子载波可以采用不同的调制方式。以BPSK为例,调制公式为:s_k(t) = a_k * cos(2πf_k t + φ_k)其中,s_k(t)表示第k个子载波上的调制信号,a_k表示调制符号的幅度,f_k表示第k个子载波的频率,φ_k表示第k个子载波的相位。

2.2 脉冲成型滤波
在GFDM中,为了减小子载波间的干扰,通常在调制符号上施加一个脉冲成型滤波器。该滤波器可以在时域和频域上实现良好的局部化特性,从而减小子载波间的干扰。常用的脉冲成型滤波器包括矩形滤波器、高斯滤波器和升余弦滤波器等。

  在GFDM中,通常在调制符号上施加一个脉冲成型滤波器。以矩形滤波器为例,滤波公式为:g(t) = rect(t/T_s)其中,g(t)表示脉冲成型滤波器,rect(t/T_s)表示矩形函数,T_s表示符号时间长度。

2.3 GFDM信号生成
在GFDM中,经过子载波调制和脉冲成型滤波后的信号称为GFDM符号。一个GFDM符号由多个子载波组成,每个子载波上传输一个调制符号。多个GFDM符号组成一个GFDM帧,用于在信道上进行传输。

   在GFDM中,经过子载波调制和脉冲成型滤波后的信号称为GFDM符号。一个GFDM符号由多个子载波组成,每个子载波上传输一个调制符号。以N个子载波为例,GFDM信号生成公式为:x(t) = ∑_{k=0}^{N-1} s_k(t) * g(t - kT_s)其中,x(t)表示GFDM信号,s_k(t)表示第k个子载波上的调制信号,g(t)表示脉冲成型滤波器,T_s表示符号时间长度。

3.Verilog核心程序
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//
module TEST_GFDM;
reg i_clk;
reg i_clk2x;
reg i_rst;
reg i_fft_start;
reg i_fft_end;
reg i_fft_en;
reg signed[15:0]i_I;
reg signed[15:0]i_Q;

wire o_GFDM_start;
wire o_GFDM_ends ;
wire o_GFDM_enable;
wire signed[31:0]o_GFDM_I;
wire signed[31:0]o_GFDM_Q;

wire o_deGFDM_start;
wire o_deGFDM_ends ;
wire o_deGFDM_enable;
wire signed[31:0]o_deGFDM_I;
wire signed[31:0]o_deGFDM_Q;

GFDM GFDM_u(
.i_clk (i_clk),
.i_clk2x (i_clk2x),
.i_rst (i_rst),

            .i_fft_start   (i_fft_start),
            .i_fft_end     (i_fft_end),
            .i_fft_en      (i_fft_en),
            .i_I           (i_I),
            .i_Q           (i_Q),

            .o_GFDM_start       (o_GFDM_start),
            .o_GFDM_ends        (o_GFDM_ends),
            .o_GFDM_enable      (o_GFDM_enable),
            .o_GFDM_I           (o_GFDM_I),
            .o_GFDM_Q           (o_GFDM_Q),

            .o_deGFDM_start     (o_deGFDM_start),
            .o_deGFDM_ends      (o_deGFDM_ends),
            .o_deGFDM_enable    (o_deGFDM_enable),
            .o_deGFDM_I         (o_deGFDM_I),
            .o_deGFDM_Q         (o_deGFDM_Q)
            );

reg [15:0]cnts;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
cnts <= 16'd0;
i_I <= -1000;
i_Q <= 1000;
end
else begin

      if(i_fft_en == 1'b1)
      begin
      cnts       <= cnts+16'd1;

          if(cnts>=16'd400 & cnts<=16'd1648)
          begin
              i_I <= ~i_I;
              if (cnts[0]==1'b1)
              i_Q <= ~i_Q;
              else
              i_Q <=  i_Q;
          end    
      end
      else begin
      cnts       <= 16'd0;
      i_I <= -1000;
      i_Q <= 1000;
      end
 end

end
reg [19:0]cnts2;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
cnts2 <= 20'd0;
i_fft_start<=1'b0;
i_fft_en <=1'b0;
i_fft_end <=1'b0;
end
else begin
if(cnts2==20'd30000)
cnts2 <= 20'd0;
else
cnts2 <= cnts2 + 20'd1;

      if(cnts2==20'd0)
      begin
         i_fft_start<=1'b1;
         i_fft_en    <=1'b0;
         i_fft_end  <=1'b0;
      end
      if(cnts2==20'd1)
      begin
         i_fft_start<=1'b1;
         i_fft_en    <=1'b0;
         i_fft_end  <=1'b0;
      end
      if(cnts2==20'd2)
      begin
         i_fft_start<=1'b1;
         i_fft_en    <=1'b0;
         i_fft_end  <=1'b0;
      end
      if(cnts2==20'd3)
      begin
         i_fft_start<=1'b1;
         i_fft_en    <=1'b0;
         i_fft_end  <=1'b0;
      end

      if(cnts2==20'd4)
      begin
         i_fft_start<=1'b0;
         i_fft_en    <=1'b0;
         i_fft_end  <=1'b0;
      end
      if(cnts2>=20'd5 & cnts2<=20'd4+2047)
      begin
         i_fft_start<=1'b0;
         i_fft_en    <=1'b1;
         i_fft_end  <=1'b0;
      end

      if(cnts2==20'd4+2048)
      begin
         i_fft_start<=1'b0;
         i_fft_en    <=1'b1;
         i_fft_end  <=1'b1;
      end

      if(cnts2>20'd4+2048)
      begin
         i_fft_start<=1'b0;
         i_fft_en    <=1'b0;
         i_fft_end  <=1'b0;
      end



 end

end
initial
begin
i_clk2x= 1'b1;
i_clk = 1'b1;
i_rst = 1'b1;

#1000
i_rst = 1'b0;

end
always #10 i_clk=~i_clk;
always #5 i_clk2x=~i_clk2x;
endmodule
```

相关文章
|
1月前
|
监控 测试技术
如何进行系统压力测试?
【10月更文挑战第11天】如何进行系统压力测试?
97 34
|
1月前
|
存储 监控 网络协议
服务器压力测试是一种评估系统在极端条件下的表现和稳定性的技术
【10月更文挑战第11天】服务器压力测试是一种评估系统在极端条件下的表现和稳定性的技术
108 32
|
8天前
|
缓存 监控 测试技术
全网最全压测指南!教你如何测试和优化系统极限性能
大家好,我是小米。本文将介绍如何在实际项目中进行性能压测和优化,包括单台服务器和集群压测、使用JMeter、监控CPU和内存使用率、优化Tomcat和数据库配置等方面的内容,帮助你在高并发场景下提升系统性能。希望这些实战经验能助你一臂之力!
22 3
|
17天前
|
编解码 安全 Linux
网络空间安全之一个WH的超前沿全栈技术深入学习之路(10-2):保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali——Liinux-Debian:就怕你学成黑客啦!)作者——LJS
保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali以及常见的报错及对应解决方案、常用Kali功能简便化以及详解如何具体实现
|
2月前
|
Linux
kickstart自动安装系统 --DHCP 配置及测试
PXE+Kickstart自动安装系统需配置DHCP服务器分配IP。dhcpd.conf示例:设置更新样式、忽略客户端更新、指定下一服务器及启动文件。定义子网、网关、掩码、动态地址池并预留特定MAC地址。重启xinetd、NFS、DHCP服务,确保新服务器与Kickstart服务器在同一网络,避免误装其他机器。注意隔离测试网络以防干扰生产环境。
80 18
|
1月前
|
存储 Linux 网络安全
Kali 渗透测试:Meterpreter在Windows系统下的使用
Kali 渗透测试:Meterpreter在Windows系统下的使用
|
2月前
|
测试技术 UED 开发者
软件测试的艺术:从代码审查到用户反馈的全景探索在软件开发的宇宙中,测试是那颗确保星系正常运转的暗物质。它或许不总是站在聚光灯下,但无疑是支撑整个系统稳定性与可靠性的基石。《软件测试的艺术:从代码审查到用户反馈的全景探索》一文,旨在揭开软件测试这一神秘面纱,通过深入浅出的方式,引领读者穿梭于测试的各个环节,从细微处着眼,至宏观视角俯瞰,全方位解析如何打造无懈可击的软件产品。
本文以“软件测试的艺术”为核心,创新性地将技术深度与通俗易懂的语言风格相结合,绘制了一幅从代码审查到用户反馈全过程的测试蓝图。不同于常规摘要的枯燥概述,这里更像是一段旅程的预告片,承诺带领读者经历一场从微观世界到宏观视野的探索之旅,揭示每一个测试环节背后的哲学与实践智慧,让即便是非专业人士也能领略到软件测试的魅力所在,并从中获取实用的启示。
|
3月前
|
测试技术
探索软件测试的多维视角:从单元到系统,从静态到动态
【8月更文挑战第27天】本文将带领读者穿越软件测试的迷宫,从最微小的单元测试开始,逐步扩展到复杂的系统测试。我们将一起探索静态测试和动态测试的不同面貌,以及它们如何互补地确保软件质量。通过实际代码示例,我们将揭示测试用例的设计思路和执行过程,旨在为读者提供一个全面而深入的软件测试全景图。让我们开始这段旅程,解锁软件测试的秘密,确保我们的代码不仅能够运行,而且能够完美运行。
|
3月前
|
监控 网络协议 安全
在Linux中,如何进行系统性能的峰值测试?
在Linux中,如何进行系统性能的峰值测试?
|
3月前
|
运维 监控 Linux
在Linux中,如何进行系统性能的模拟测试?
在Linux中,如何进行系统性能的模拟测试?

热门文章

最新文章