m基于FPGA的GFDM调制解调系统verilog实现,包含testbench仿真测试文件

简介: m基于FPGA的GFDM调制解调系统verilog实现,包含testbench仿真测试文件

1.算法仿真效果
本系统进行了Vivado2019.2平台的开发,测试结果如下:

5714de3ea2609ef09353125f0a93ffc6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

GFDM调制信号放大:

0a2e40785f90399a264108c1b1ebbbc3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

GFDM解调信号放大:

539a4ce6f102bdbacb6dc840a6758843_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

系统RTL结构图如下:
13111a8017fe0db7ba58fe21135f7fd3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
随着通信技术的不断发展,人们对数据传输速率和频谱效率的要求越来越高。为了满足这些需求,一种名为广义频分复用(GFDM)的新型调制技术应运而生。GFDM具有灵活的子载波间隔和符号时间长度,能够在各种复杂环境中实现高效的数据传输。

   GFDM是一种基于子载波的多载波调制技术,通过对子载波进行调制和解调来实现数据传输。与传统的正交频分复用(OFDM)相比,GFDM具有更灵活的子载波间隔和符号时间长度,可以更好地适应不同的信道环境。

2.1 子载波调制
在GFDM中,每个子载波可以采用不同的调制方式,如BPSK、QPSK、16QAM等。调制符号在子载波上进行传输,子载波的间隔可以根据需要进行调整。调制符号在每个子载波上的传输时间称为符号时间,符号时间的长度也可以根据需要进行调整。

   在GFDM中,每个子载波可以采用不同的调制方式。以BPSK为例,调制公式为:s_k(t) = a_k * cos(2πf_k t + φ_k)其中,s_k(t)表示第k个子载波上的调制信号,a_k表示调制符号的幅度,f_k表示第k个子载波的频率,φ_k表示第k个子载波的相位。

2.2 脉冲成型滤波
在GFDM中,为了减小子载波间的干扰,通常在调制符号上施加一个脉冲成型滤波器。该滤波器可以在时域和频域上实现良好的局部化特性,从而减小子载波间的干扰。常用的脉冲成型滤波器包括矩形滤波器、高斯滤波器和升余弦滤波器等。

  在GFDM中,通常在调制符号上施加一个脉冲成型滤波器。以矩形滤波器为例,滤波公式为:g(t) = rect(t/T_s)其中,g(t)表示脉冲成型滤波器,rect(t/T_s)表示矩形函数,T_s表示符号时间长度。

2.3 GFDM信号生成
在GFDM中,经过子载波调制和脉冲成型滤波后的信号称为GFDM符号。一个GFDM符号由多个子载波组成,每个子载波上传输一个调制符号。多个GFDM符号组成一个GFDM帧,用于在信道上进行传输。

   在GFDM中,经过子载波调制和脉冲成型滤波后的信号称为GFDM符号。一个GFDM符号由多个子载波组成,每个子载波上传输一个调制符号。以N个子载波为例,GFDM信号生成公式为:x(t) = ∑_{k=0}^{N-1} s_k(t) * g(t - kT_s)其中,x(t)表示GFDM信号,s_k(t)表示第k个子载波上的调制信号,g(t)表示脉冲成型滤波器,T_s表示符号时间长度。

3.Verilog核心程序
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//
module TEST_GFDM;
reg i_clk;
reg i_clk2x;
reg i_rst;
reg i_fft_start;
reg i_fft_end;
reg i_fft_en;
reg signed[15:0]i_I;
reg signed[15:0]i_Q;

wire o_GFDM_start;
wire o_GFDM_ends ;
wire o_GFDM_enable;
wire signed[31:0]o_GFDM_I;
wire signed[31:0]o_GFDM_Q;

wire o_deGFDM_start;
wire o_deGFDM_ends ;
wire o_deGFDM_enable;
wire signed[31:0]o_deGFDM_I;
wire signed[31:0]o_deGFDM_Q;

GFDM GFDM_u(
.i_clk (i_clk),
.i_clk2x (i_clk2x),
.i_rst (i_rst),

            .i_fft_start   (i_fft_start),
            .i_fft_end     (i_fft_end),
            .i_fft_en      (i_fft_en),
            .i_I           (i_I),
            .i_Q           (i_Q),

            .o_GFDM_start       (o_GFDM_start),
            .o_GFDM_ends        (o_GFDM_ends),
            .o_GFDM_enable      (o_GFDM_enable),
            .o_GFDM_I           (o_GFDM_I),
            .o_GFDM_Q           (o_GFDM_Q),

            .o_deGFDM_start     (o_deGFDM_start),
            .o_deGFDM_ends      (o_deGFDM_ends),
            .o_deGFDM_enable    (o_deGFDM_enable),
            .o_deGFDM_I         (o_deGFDM_I),
            .o_deGFDM_Q         (o_deGFDM_Q)
            );

reg [15:0]cnts;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
cnts <= 16'd0;
i_I <= -1000;
i_Q <= 1000;
end
else begin

      if(i_fft_en == 1'b1)
      begin
      cnts       <= cnts+16'd1;

          if(cnts>=16'd400 & cnts<=16'd1648)
          begin
              i_I <= ~i_I;
              if (cnts[0]==1'b1)
              i_Q <= ~i_Q;
              else
              i_Q <=  i_Q;
          end    
      end
      else begin
      cnts       <= 16'd0;
      i_I <= -1000;
      i_Q <= 1000;
      end
 end

end
reg [19:0]cnts2;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
cnts2 <= 20'd0;
i_fft_start<=1'b0;
i_fft_en <=1'b0;
i_fft_end <=1'b0;
end
else begin
if(cnts2==20'd30000)
cnts2 <= 20'd0;
else
cnts2 <= cnts2 + 20'd1;

      if(cnts2==20'd0)
      begin
         i_fft_start<=1'b1;
         i_fft_en    <=1'b0;
         i_fft_end  <=1'b0;
      end
      if(cnts2==20'd1)
      begin
         i_fft_start<=1'b1;
         i_fft_en    <=1'b0;
         i_fft_end  <=1'b0;
      end
      if(cnts2==20'd2)
      begin
         i_fft_start<=1'b1;
         i_fft_en    <=1'b0;
         i_fft_end  <=1'b0;
      end
      if(cnts2==20'd3)
      begin
         i_fft_start<=1'b1;
         i_fft_en    <=1'b0;
         i_fft_end  <=1'b0;
      end

      if(cnts2==20'd4)
      begin
         i_fft_start<=1'b0;
         i_fft_en    <=1'b0;
         i_fft_end  <=1'b0;
      end
      if(cnts2>=20'd5 & cnts2<=20'd4+2047)
      begin
         i_fft_start<=1'b0;
         i_fft_en    <=1'b1;
         i_fft_end  <=1'b0;
      end

      if(cnts2==20'd4+2048)
      begin
         i_fft_start<=1'b0;
         i_fft_en    <=1'b1;
         i_fft_end  <=1'b1;
      end

      if(cnts2>20'd4+2048)
      begin
         i_fft_start<=1'b0;
         i_fft_en    <=1'b0;
         i_fft_end  <=1'b0;
      end



 end

end
initial
begin
i_clk2x= 1'b1;
i_clk = 1'b1;
i_rst = 1'b1;

#1000
i_rst = 1'b0;

end
always #10 i_clk=~i_clk;
always #5 i_clk2x=~i_clk2x;
endmodule
```

相关文章
|
13天前
|
Linux Shell 网络安全
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
本指南介绍如何利用 HTA 文件和 Metasploit 框架进行渗透测试。通过创建反向 shell、生成 HTA 文件、设置 HTTP 服务器和发送文件,最终实现对目标系统的控制。适用于教育目的,需合法授权。
48 9
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
|
7天前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的2FSK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的2FSK调制解调系统,包含高斯信道、误码率统计模块及testbench。系统增加了ILA在线数据采集和VIO在线SNR设置模块,支持不同SNR下的硬件测试,并提供操作视频指导。理论部分涵盖频移键控(FSK)原理,包括相位连续与不连续FSK信号的特点及功率谱密度特性。Verilog代码实现了FSK调制解调的核心功能,支持在不同开发板上移植。硬件测试结果展示了不同SNR下的性能表现。
33 6
|
2月前
|
运维
【运维基础知识】用dos批处理批量替换文件中的某个字符串(本地单元测试通过,部分功能有待优化,欢迎指正)
该脚本用于将C盘test目录下所有以t开头的txt文件中的字符串“123”批量替换为“abc”。通过创建批处理文件并运行,可实现自动化文本替换,适合初学者学习批处理脚本的基础操作与逻辑控制。
198 56
|
2月前
|
安全 Linux 网络安全
Kali渗透测试:自动播放文件攻击
Kali渗透测试:自动播放文件攻击
42 0
|
17天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
114 69
|
21天前
|
移动开发 算法 数据安全/隐私保护
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
53 26
|
27天前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
54 8
|
1月前
|
算法 物联网 异构计算
基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4FSK调制解调系统的Verilog实现,包括高斯信道模块和误码率统计模块,支持不同SNR设置。系统在Vivado 2019.2上开发,展示了在不同SNR条件下的仿真结果。4FSK调制通过将输入数据转换为四个不同频率的信号来提高频带利用率和抗干扰能力,适用于无线通信和数据传输领域。文中还提供了核心Verilog代码,详细描述了调制、加噪声、解调及误码率计算的过程。
58 11
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
45 1
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
56 4

热门文章

最新文章