数据结构:谈快速排序的多种优化和非递归展开,以及排序思想归纳

简介: 数据结构:谈快速排序的多种优化和非递归展开,以及排序思想归纳

写在前面

快速排序作为效率相当高的排序算法,除了对于特殊数据有其一定的局限性,在大多数应用场景中都有它特有的优势和应用,前面文章有对快速排序做总结,但实际上快速排序由于它广泛的应用和特殊的优势,应当值得单独拿来仔细琢磨分析,因此这篇主要对快速排序的各种细节进行打磨和分析,加深印象也能不断提升效率,打开思维举一反三用到更多的场景中

快速排序的基本体系

在进行快速排序的优化前,先进行一些回忆快速排序的方法,有利于后续对快速排序的总结

首先这里先介绍的都是递归形式的快速排序,从大的方向来看,快速排序实现是很简单的,需要借助一个让数据分布在某一值两侧的算法,再在此基础上递归到左边和右边即可,那么基本框架就是下面的这样:

void QuickSort(int* a, int begin, int end)
{
  if (begin >= end)
  {
    return;
  }
  int keyi = Partsort(a, begin, end);
  QuickSort(a, begin, keyi - 1);
  QuickSort(a, keyi + 1, end);
}

而上面的算法有三种,分别是hoare算法,挖坑算法,前后指针算法,这三种都能完成快速排序,这里只介绍其中一种前后指针法,掌握一种即可让快速排序跑起来,完成我们对它的目标

下面进行前后指针法

前后指针法可以通俗的认为,cur在前面探路,只要遇到一个比key小的数字就把这个数字扔到后面,最后再把key往前放

int Partsort(int* a, int left, int right)
{
  int prev = left;
  int cur = left + 1;
  int keyi = left;
  while (cur <= right)
  {
    if (a[cur] < a[keyi])
    {
      prev++;
      Swap(&a[prev], &a[cur]);
    }
    cur++;
  }
  Swap(&a[prev], &a[keyi]);
  return prev;
}

快速排序的优化

下面我用leetcode中的一道题进行分析快速排序的多种优化

leetcode – 数组排序

首先,我们把上面的代码放上去,显然leetcode不会允许你这么简单的就通过测试

这里观察发现,过不去的原因是快速排序对于keyi的选择是很重要的,如果keyi恰好选到了最小的一个值,那么时间复杂度一下变成O(N^2),回到上面的测试样例看,如果测试样例让keyi每次都选了最小的,时间复杂度回到了冒泡排序一个级别的效率,很显然是过不了的,那么我们的第一步优化就是让keyi的选择发生一些改变

int GetMid(int* a, int left, int right)
{
  int midi = (left + right) / 2;
  if (a[left] < a[midi])
  {
    if (a[midi] < a[right])
    {
      return midi;
    }
    else if (a[left] > a[right])
    {
      return left;
    }
    else
    {
      return right;
    }
  }
  else  // a[left] > a[midi]
  {
    if (a[midi] > a[right])
    {
      return midi;
    }
    else if (a[left] < a[right])
    {
      return left;
    }
    else
    {
      return right;
    }
  }
}
int Partsort(int* a, int left, int right)
{
  int midi = GetMid(a, left, right);
  Swap(&a[midi], &a[left]);
  int cur = left + 1;
  int prev = left;
  int keyi = left;
  while (cur <= right)
  {
    if (a[cur] < a[keyi])
    {
      ++prev;
      Swap(&a[prev], &a[cur]);
    }
    cur++;
  }
  Swap(&a[prev], &a[keyi]);
  return prev;
}
void QuickSort(int* a, int begin, int end)
{
  if (begin >= end)
  {
    return;
  }
  int keyi = Partsort(a, begin, end);
  QuickSort(a, begin, keyi - 1);
  QuickSort(a, keyi + 1, end);
}

看起来这次靠谱了不少,这样的话对key的选择就相对随机了一点,再跑一次试试看

但依旧被卡住了,那这如何处理?究其原因还是因为这是题目的数据对快速排序进行了特殊照顾,破局的方法也是有的,利用rand随机值处理一下

void Swap(int* p, int* c)
{
  int tmp = *p;
  *p = *c;
  *c = tmp;
}
int GetMid(int* a, int left, int right)
{
  //int midi = (left + right) / 2;
  int midi = left+(rand() % (right-left));
  if (a[left] < a[midi])
  {
    if (a[midi] < a[right])
    {
      return midi;
    }
    else if (a[left] > a[right])
    {
      return left;
    }
    else
    {
      return right;
    }
  }
  else  // a[left] > a[midi]
  {
    if (a[midi] > a[right])
    {
      return midi;
    }
    else if (a[left] < a[right])
    {
      return left;
    }
    else
    {
      return right;
    }
  }
}
int Partsort(int* a, int left, int right)
{
  int midi = GetMid(a, left, right);
  Swap(&a[midi], &a[left]);
  int cur = left + 1;
  int prev = left;
  int keyi = left;
  while (cur <= right)
  {
    if (a[cur] < a[keyi])
    {
      ++prev;
      Swap(&a[prev], &a[cur]);
    }
    cur++;
  }
  Swap(&a[prev], &a[keyi]);
  return prev;
}
void QuickSort(int* a, int begin, int end)
{
  if (begin >= end)
  {
    return;
  }
  int keyi = Partsort(a, begin, end);
  QuickSort(a, begin, keyi - 1);
  QuickSort(a, keyi + 1, end);
}

但似乎并不奏效,最后还是会被卡住,这里出现问题的原因很简单,如果全是一个数字,快速排序依旧不占优,这里就引入了第三次优化,叫三路划分

三路划分:

主要针对的就是这样的情况,解决的原理就是把定义left cur right指针,如果cur指向的内容比key大,就和left进行交换,如果cur的值和key的值相等就继续向后遍历,如果cur的值大于key,就和right进行交换,由于不知道right换过来的值是多少,但可以保证right此时的值一定是大于key的,因此只需要让right–即可

那么代码实现就可以改成这样

class Solution 
{
public:
    vector<int> sortArray(vector<int>& nums) 
    {
        srand(time(0));
        quicksort(nums,0,nums.size()-1);
        return nums;
    }
    void quicksort(vector<int>& nums,int left,int right)
    {
        if(left>=right)
        {
            return;
        }
        int key=numsrandom(nums,left,right);
        int i=left,begin=left-1,end=right+1;
        while(i<end)
        {
            if(nums[i]<key)
            {
                swap(nums[++begin],nums[i++]);
            }
            else if(nums[i]==key)
            {
                i++;
            }
            else
            {
                swap(nums[--end],nums[i]);
            }
        }
        quicksort(nums,left,begin);
        quicksort(nums,end,right);
    }
    int numsrandom(vector<int>& nums,int left,int right)
    {
        int keyi=rand()%(right-left+1)+left;
        return nums[keyi];
    }
};

这样就能解决问题了

由此可见,快速排序从最初版本到可优化版本之间有很多优化点,也侧面反映出快速排序实际上是一个不算稳定的排序,在许多特定的算法下它并不适合

快速排序的非递归实现

快速排序是利用递归实现的,而凡是递归就有可能爆栈的情况出现,因此这里要准备快速排序的非递归实现方法

非递归实现是借助栈实现的,栈是在堆上malloc实现的,栈区一般在几十Mb左右,而堆区有几G左右的空间,在堆上完成操作是没有问题的

当left<keyi-1才会入栈,当keyi+1<right才会入栈

随着不断入栈出栈,区间划分越来越小,left最终会等于keyi-1,这样就不会入栈,右边同理,不入栈只出栈,最终栈会为空,当栈为空时,排序完成

后续STL中用栈可以很方便表示

排序分类总结

插入排序

插入排序:有直接插入和希尔排序,其中希尔排序是在直接插入的基础上衍生而来的

先说插入排序原理:从前向后遍历,如果遍历的数字比前面的数字小,就继续和前面的前面的数字比,直到该数字比前面的数字大,那么再让比它大的数字向后挪,它本身插入到这当中即可

再说希尔排序原理:希尔排序是在插入排序的基础上衍生出来的,原理是先进行预排序,再进行插入排序,直接插入排序对于数据差异很大的数据表现并不好,因此希尔排序先把数据进行一个预排序,再进行插入排序效果就会好很多

选择排序

选择排序:原理是每次排序都能选出一个最值,这样经过N次后就可以选出每次的最值,这样就能把数据排好,选择排序分为选择排序和堆排序

先说普通的选择排序:就是直接进行选择,效率较差,时间复杂度也很高

再说堆排序:要利用的是一种特殊的数据结构–堆,通过这个数据结构可以把数组中的元素搭建成堆的模型,再用堆的模型选出最大值,放到最后的位置,再重新调整堆,找出新的最大值,依次类推就可以找到正确的顺序,完成一组数的正确排序

交换排序

交换排序分为冒泡排序和快速排序,其中快速排序是比较好用的排序

先说冒泡排序:效率比普通插入排序高一点,冒泡排序的基本原理是把每次进行两两元素的交换,这样可以把一个最大的元素交换到末尾,再进行第二次交换,直到把所有元素按顺序交换到最后,这样就实现了排序的基本功能

再说快速排序:效率是很可观的,基本原理是利用递归的思想,把数据进行分割,选出一个关键数,让所有数字中比关键数大的排在关键数右边,比关键数小的排在关键数左边,再分别到左边和右边进行分割,直到分割的区域足够小,这样就能保证左边中间右边有序,每个区间都这样做,就能保证最终的区间是有序的,这样就能完成快速排序

归并排序

归并排序也是利用了递归的思想,把数字全部拆成零散的数据,再把这些数据都组合起来即可

相关文章
|
2月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
44 1
|
11天前
|
存储 人工智能 算法
【C++数据结构——内排序】二路归并排序(头歌实践教学平台习题)【合集】
本关任务是实现二路归并算法,即将两个有序数组合并为一个有序数组。主要内容包括: - **任务描述**:实现二路归并算法。 - **相关知识**: - 二路归并算法的基本概念。 - 算法步骤:通过比较两个有序数组的元素,依次将较小的元素放入新数组中。 - 代码示例(以 C++ 为例)。 - 时间复杂度为 O(m+n),空间复杂度为 O(m+n)。 - **测试说明**:平台会对你编写的代码进行测试,提供输入和输出示例。 - **通关代码**:提供了完整的 C++ 实现代码。 - **测试结果**:展示代码运行后的排序结果。 开始你的任务吧,祝你成功!
30 10
|
11天前
|
搜索推荐 算法 数据处理
【C++数据结构——内排序】希尔排序(头歌实践教学平台习题)【合集】
本文介绍了希尔排序算法的实现及相关知识。主要内容包括: - **任务描述**:实现希尔排序算法。 - **相关知识**: - 排序算法基础概念,如稳定性。 - 插入排序的基本思想和步骤。 - 间隔序列(增量序列)的概念及其在希尔排序中的应用。 - 算法的时间复杂度和空间复杂度分析。 - 代码实现技巧,如循环嵌套和索引计算。 - **测试说明**:提供了测试输入和输出示例,帮助验证代码正确性。 - **我的通关代码**:给出了完整的C++代码实现。 - **测试结果**:展示了代码运行的测试结果。 通过这些内容,读者可以全面了解希尔排序的原理和实现方法。
42 10
|
11天前
|
搜索推荐 C++
【C++数据结构——内排序】快速排序(头歌实践教学平台习题)【合集】
快速排序是一种高效的排序算法,基于分治策略。它的主要思想是通过选择一个基准元素(pivot),将数组划分成两部分。一部分的元素都小于等于基准元素,另一部分的元素都大于等于基准元素。然后对这两部分分别进行排序,最终使整个数组有序。(第一行是元素个数,第二行是待排序的原始关键字数据。本关任务:实现快速排序算法。开始你的任务吧,祝你成功!
30 7
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
80 1
|
2月前
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
62 6
|
3月前
|
算法 搜索推荐 Shell
数据结构与算法学习十二:希尔排序、快速排序(递归、好理解)、归并排序(递归、难理解)
这篇文章介绍了希尔排序、快速排序和归并排序三种排序算法的基本概念、实现思路、代码实现及其测试结果。
66 1
|
3月前
|
算法 搜索推荐 Java
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
基数排序是一种稳定的排序算法,通过将数字按位数切割并分配到不同的桶中,以空间换时间的方式实现快速排序,但占用内存较大,不适合含有负数的数组。
50 0
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
|
2月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
283 9

热门文章

最新文章