【Python机器学习】实验04 多分类实践(基于逻辑回归)3

简介: 【Python机器学习】实验04 多分类实践(基于逻辑回归)3

2. 训练数据的准备

data=np.insert(data_x,data_x.shape[1],data_y,axis=1)
data=pd.DataFrame(data,columns=["F1","F2","F3","F4","F5","F6","target"])
data
F1 F2 F3 F4 F5 F6 target
0 2.116632 7.972800 -9.328969 -8.224605 -12.178429 5.498447 2.0
1 1.886449 4.621006 2.841595 0.431245 -2.471350 2.507833 0.0
2 2.391329 6.464609 -9.805900 -7.289968 -9.650985 6.388460 2.0
3 -1.034776 6.626886 9.031235 -0.812908 5.449855 0.134062 1.0
4 -0.481593 8.191753 7.504717 -1.975688 6.649021 0.636824 1.0
... ... ... ... ... ... ... ...
195 5.434893 7.128471 9.789546 6.061382 0.634133 5.757024 3.0
196 -0.406625 7.586001 9.322750 -1.837333 6.477815 -0.992725 1.0
197 2.031462 7.804427 -8.539512 -9.824409 -10.046935 6.918085 2.0
198 4.081889 6.127685 11.091126 4.812011 -0.005915 5.342211 3.0
199 0.985744 7.285737 -8.395940 -6.586471 -9.651765 6.651012 2.0

200 rows × 7 columns

data["target"]=data["target"].astype("int32")
data

F1
F2 F3 F4 F5 F6 target
0 2.116632 7.972800 -9.328969 -8.224605 -12.178429 5.498447 2
1 1.886449 4.621006 2.841595 0.431245 -2.471350 2.507833 0
2 2.391329 6.464609 -9.805900 -7.289968 -9.650985 6.388460 2
3 -1.034776 6.626886 9.031235 -0.812908 5.449855 0.134062 1
4 -0.481593 8.191753 7.504717 -1.975688 6.649021 0.636824 1
... ... ... ... ... ... ... ...
195 5.434893 7.128471 9.789546 6.061382 0.634133 5.757024 3
196 -0.406625 7.586001 9.322750 -1.837333 6.477815 -0.992725 1
197 2.031462 7.804427 -8.539512 -9.824409 -10.046935 6.918085 2
198 4.081889 6.127685 11.091126 4.812011 -0.005915 5.342211 3
199 0.985744 7.285737 -8.395940 -6.586471 -9.651765 6.651012 2

200 rows × 7 columns

data.insert(0,"ones",1)
data

ones
F1 F2 F3 F4 F5 F6 target
0 1 2.116632 7.972800 -9.328969 -8.224605 -12.178429 5.498447 2
1 1 1.886449 4.621006 2.841595 0.431245 -2.471350 2.507833 0
2 1 2.391329 6.464609 -9.805900 -7.289968 -9.650985 6.388460 2
3 1 -1.034776 6.626886 9.031235 -0.812908 5.449855 0.134062 1
4 1 -0.481593 8.191753 7.504717 -1.975688 6.649021 0.636824 1
... ... ... ... ... ... ... ... ...
195 1 5.434893 7.128471 9.789546 6.061382 0.634133 5.757024 3
196 1 -0.406625 7.586001 9.322750 -1.837333 6.477815 -0.992725 1
197 1 2.031462 7.804427 -8.539512 -9.824409 -10.046935 6.918085 2
198 1 4.081889 6.127685 11.091126 4.812011 -0.005915 5.342211 3
199 1 0.985744 7.285737 -8.395940 -6.586471 -9.651765 6.651012 2

200 rows × 8 columns

#第一个类别的数据
data1=data.copy()
data1.loc[data["target"]==0,"target"]=1
data1.loc[data["target"]!=0,"target"]=0
data1

ones
F1 F2 F3 F4 F5 F6 target
0 1 2.116632 7.972800 -9.328969 -8.224605 -12.178429 5.498447 0
1 1 1.886449 4.621006 2.841595 0.431245 -2.471350 2.507833 1
2 1 2.391329 6.464609 -9.805900 -7.289968 -9.650985 6.388460 0
3 1 -1.034776 6.626886 9.031235 -0.812908 5.449855 0.134062 0
4 1 -0.481593 8.191753 7.504717 -1.975688 6.649021 0.636824 0
... ... ... ... ... ... ... ... ...
195 1 5.434893 7.128471 9.789546 6.061382 0.634133 5.757024 0
196 1 -0.406625 7.586001 9.322750 -1.837333 6.477815 -0.992725 0
197 1 2.031462 7.804427 -8.539512 -9.824409 -10.046935 6.918085 0
198 1 4.081889 6.127685 11.091126 4.812011 -0.005915 5.342211 0
199 1 0.985744 7.285737 -8.395940 -6.586471 -9.651765 6.651012 0

200 rows × 8 columns

data1_x=data1.iloc[:,:data1.shape[1]-1].values
data1_y=data1.iloc[:,data1.shape[1]-1].values
data1_x.shape,data1_y.shape
((200, 7), (200,))
#第二个类别的数据
data2=data.copy()
data2.loc[data["target"]==1,"target"]=1
data2.loc[data["target"]!=1,"target"]=0
data2


ones F1 F2 F3 F4 F5 F6 target
0 1 2.116632 7.972800 -9.328969 -8.224605 -12.178429 5.498447 0
1 1 1.886449 4.621006 2.841595 0.431245 -2.471350 2.507833 0
2 1 2.391329 6.464609 -9.805900 -7.289968 -9.650985 6.388460 0
3 1 -1.034776 6.626886 9.031235 -0.812908 5.449855 0.134062 1
4 1 -0.481593 8.191753 7.504717 -1.975688 6.649021 0.636824 1
... ... ... ... ... ... ... ... ...
195 1 5.434893 7.128471 9.789546 6.061382 0.634133 5.757024 0
196 1 -0.406625 7.586001 9.322750 -1.837333 6.477815 -0.992725 1
197 1 2.031462 7.804427 -8.539512 -9.824409 -10.046935 6.918085 0
198 1 4.081889 6.127685 11.091126 4.812011 -0.005915 5.342211 0
199 1 0.985744 7.285737 -8.395940 -6.586471 -9.651765 6.651012 0

200 rows × 8 columns

data2_x=data2.iloc[:,:data2.shape[1]-1].values
data2_y=data2.iloc[:,data2.shape[1]-1].values
#第三个类别的数据
data3=data.copy()
data3.loc[data["target"]==2,"target"]=1
data3.loc[data["target"]!=2,"target"]=0
data3
ones F1 F2 F3 F4 F5 F6 target
0 1 2.116632 7.972800 -9.328969 -8.224605 -12.178429 5.498447 1
1 1 1.886449 4.621006 2.841595 0.431245 -2.471350 2.507833 0
2 1 2.391329 6.464609 -9.805900 -7.289968 -9.650985 6.388460 1
3 1 -1.034776 6.626886 9.031235 -0.812908 5.449855 0.134062 0
4 1 -0.481593 8.191753 7.504717 -1.975688 6.649021 0.636824 0
... ... ... ... ... ... ... ... ...
195 1 5.434893 7.128471 9.789546 6.061382 0.634133 5.757024 0
196 1 -0.406625 7.586001 9.322750 -1.837333 6.477815 -0.992725 0
197 1 2.031462 7.804427 -8.539512 -9.824409 -10.046935 6.918085 1
198 1 4.081889 6.127685 11.091126 4.812011 -0.005915 5.342211 0
199 1 0.985744 7.285737 -8.395940 -6.586471 -9.651765 6.651012 1

200 rows × 8 columns

data3_x=data3.iloc[:,:data3.shape[1]-1].values
data3_y=data3.iloc[:,data3.shape[1]-1].values
#第四个类别的数据
data4=data.copy()
data4.loc[data["target"]==3,"target"]=1
data4.loc[data["target"]!=3,"target"]=0
data4


ones F1 F2 F3 F4 F5 F6 target
0 1 2.116632 7.972800 -9.328969 -8.224605 -12.178429 5.498447 0
1 1 1.886449 4.621006 2.841595 0.431245 -2.471350 2.507833 0
2 1 2.391329 6.464609 -9.805900 -7.289968 -9.650985 6.388460 0
3 1 -1.034776 6.626886 9.031235 -0.812908 5.449855 0.134062 0
4 1 -0.481593 8.191753 7.504717 -1.975688 6.649021 0.636824 0
... ... ... ... ... ... ... ... ...
195 1 5.434893 7.128471 9.789546 6.061382 0.634133 5.757024 1
196 1 -0.406625 7.586001 9.322750 -1.837333 6.477815 -0.992725 0
197 1 2.031462 7.804427 -8.539512 -9.824409 -10.046935 6.918085 0
198 1 4.081889 6.127685 11.091126 4.812011 -0.005915 5.342211 1
199 1 0.985744 7.285737 -8.395940 -6.586471 -9.651765 6.651012 0

200 rows × 8 columns

data4_x=data4.iloc[:,:data4.shape[1]-1].values
data4_y=data4.iloc[:,data4.shape[1]-1].values

3. 定义假设函数、代价函数和梯度下降算法

def sigmoid(z):
    return 1 / (1 + np.exp(-z))
def h(X,w):
    z=X@w
    h=sigmoid(z)
    return h
#代价函数构造
def cost(X,w,y):
    #当X(m,n+1),y(m,),w(n+1,1)
    y_hat=sigmoid(X@w)
    right=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())
    cost=-np.sum(right)/X.shape[0]
    return cost
def grandient(X,y,iter_num,alpha):
    y=y.reshape((X.shape[0],1))
    w=np.zeros((X.shape[1],1))
    cost_lst=[]  
    for i in range(iter_num):
        y_pred=h(X,w)-y
        temp=np.zeros((X.shape[1],1))
        for j in range(X.shape[1]):
            right=np.multiply(y_pred.ravel(),X[:,j])
            gradient=1/(X.shape[0])*(np.sum(right))
            temp[j,0]=w[j,0]-alpha*gradient
        w=temp
        cost_lst.append(cost(X,w,y.ravel()))
    return w,cost_lst

4. 学习这四个分类模型

import matplotlib.pyplot as plt
#初始化超参数
iter_num,alpha=600000,0.001
#训练第1个模型
w1,cost_lst1=grandient(data1_x,data1_y,iter_num,alpha)
plt.plot(range(iter_num),cost_lst1,"b-o")
[<matplotlib.lines.Line2D at 0x25624eb08e0>]


#训练第2个模型
w2,cost_lst2=grandient(data2_x,data2_y,iter_num,alpha)
plt.plot(range(iter_num),cost_lst2,"b-o")
[<matplotlib.lines.Line2D at 0x25631b87a60>]


#训练第3个模型
w3,cost_lst3=grandient(data3_x,data3_y,iter_num,alpha)
plt.plot(range(iter_num),cost_lst3,"b-o")
[<matplotlib.lines.Line2D at 0x2562bcdfac0>]


#训练第4个模型
w4,cost_lst4=grandient(data4_x,data4_y,iter_num,alpha)
plt.plot(range(iter_num),cost_lst4,"b-o")
[<matplotlib.lines.Line2D at 0x25631ff4ee0>]

5. 利用模型进行预测

data_x


array([[ 2.11663151e+00,  7.97280013e+00, -9.32896918e+00,
        -8.22460526e+00, -1.21784287e+01,  5.49844655e+00],
       [ 1.88644899e+00,  4.62100554e+00,  2.84159548e+00,
         4.31244563e-01, -2.47135027e+00,  2.50783257e+00],
       [ 2.39132949e+00,  6.46460915e+00, -9.80590050e+00,
        -7.28996786e+00, -9.65098460e+00,  6.38845956e+00],
       ...,
       [ 2.03146167e+00,  7.80442707e+00, -8.53951210e+00,
        -9.82440872e+00, -1.00469351e+01,  6.91808489e+00],
       [ 4.08188906e+00,  6.12768483e+00,  1.10911262e+01,
         4.81201082e+00, -5.91530191e-03,  5.34221079e+00],
       [ 9.85744105e-01,  7.28573657e+00, -8.39593964e+00,
        -6.58647097e+00, -9.65176507e+00,  6.65101187e+00]])
data_x=np.insert(data_x,0,1,axis=1)
data_x.shape
(200, 7)
w3.shape
(7, 1)
multi_pred=pd.DataFrame(zip(h(data_x,w1).ravel(),h(data_x,w2).ravel(),h(data_x,w3).ravel(),h(data_x,w4).ravel()))
multi_pred
0 1 2 3
0 0.020436 4.556248e-15 9.999975e-01 2.601227e-27
1 0.820488 4.180906e-05 3.551499e-05 5.908691e-05
2 0.109309 7.316201e-14 9.999978e-01 7.091713e-24
3 0.036608 9.999562e-01 1.048562e-09 5.724854e-03
4 0.003075 9.999292e-01 2.516742e-09 6.423038e-05
... ... ... ... ...
195 0.017278 3.221293e-06 3.753372e-14 9.999943e-01
196 0.003369 9.999966e-01 6.673394e-10 2.281428e-03
197 0.000606 1.118174e-13 9.999941e-01 1.780212e-28
198 0.013072 4.999118e-05 9.811154e-14 9.996689e-01
199 0.151548 1.329623e-13 9.999447e-01 2.571989e-24

200 rows × 4 columns

6. 计算准确率

np.sum(np.argmax(multi_pred.values,axis=1)==data_y.ravel())/len(data)
1.0


目录
相关文章
|
5天前
|
机器学习/深度学习 算法 数据挖掘
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-2
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享
28 1
|
17天前
|
机器学习/深度学习 自然语言处理 算法
|
4天前
|
机器学习/深度学习 算法 搜索推荐
Python用机器学习算法进行因果推断与增量、增益模型Uplift Modeling智能营销模型
Python用机器学习算法进行因果推断与增量、增益模型Uplift Modeling智能营销模型
31 12
|
10天前
|
机器学习/深度学习 数据可视化 数据挖掘
《Python 简易速速上手小册》第9章:数据科学和机器学习入门(2024 最新版)
《Python 简易速速上手小册》第9章:数据科学和机器学习入门(2024 最新版)
19 1
|
10天前
|
机器学习/深度学习 存储 算法
PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化
PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化
31 7
|
10天前
|
机器学习/深度学习 数据可视化 算法
PYTHON用决策树分类预测糖尿病和可视化实例
PYTHON用决策树分类预测糖尿病和可视化实例
17 0
|
12天前
|
机器学习/深度学习 人工智能 分布式计算
R和Python机器学习:广义线性回归glm,样条glm,梯度增强,随机森林和深度学习模型分析
R和Python机器学习:广义线性回归glm,样条glm,梯度增强,随机森林和深度学习模型分析
16 0
|
18天前
|
机器学习/深度学习 JavaScript 前端开发
机器学习模型部署:使用Python和Vue搭建用户友好的预测界面
【4月更文挑战第10天】本文介绍了如何使用Python和Vue.js构建机器学习模型预测界面。Python作为机器学习的首选语言,结合Vue.js的前端框架,能有效部署模型并提供直观的预测服务。步骤包括:1) 使用Python训练模型并保存;2) 创建Python后端应用提供API接口;3) 利用Vue CLI构建前端项目;4) 设计Vue组件实现用户界面;5) 前后端交互通过HTTP请求;6) 优化用户体验;7) 全面测试并部署。这种技术组合为机器学习模型的实用化提供了高效解决方案,未来有望更加智能和个性化。
|
19天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【4月更文挑战第9天】本文介绍了使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先,简述了机器学习的基本概念和类型。接着,展示了如何安装Python和Scikit-learn,加载与处理数据,选择模型进行训练,以及评估模型性能。通过本文,读者可了解机器学习入门步骤,并借助Python和Scikit-learn开始实践。
|
2天前
|
机器学习/深度学习 数据挖掘 API
pymc,一个灵活的的 Python 概率编程库!
pymc,一个灵活的的 Python 概率编程库!
5 1