【Python基础】Python包(库)

简介: 【Python基础】Python包(库)

Python包

自定义包

  • 什么是Python包?
  • 从物理上看,包就是一个文件夹,在该文件夹下包含了一个__init__.py文件,该文件夹可用于包含多个模块文件
  • 从逻辑上看,包的本质依然是模块

__init__.py是一个特殊文件,只要这个文件存在于这个文件夹中,那这个文件夹就是一个python包

  • 包的作用:
    当我们的模块文件越来越多时,包可以帮助我们管理这些模块,包的作用就是包含多个模块,但包的本质依然是模块

如何创建对应的包?

步骤如下:

  1. 新建包my_package
  2. 新建包内模块:my_module1my_module2
  3. 模块内代码如下

Pycharm中的基本步骤:

[New] -> [Python Package] -> 输入包名 -> [OK] -> 新建功能模块(有联系的模块)

Tip:新建包后,包内部会自动创建__init__.py文件,这个文件控制着包的导入行为

如何使用包?/导入包

方式一:

1、import

import 包名.模块名
包名.模块名.目标
# 导入自定义的包中的模块,并使用
import my_package.my_module1
import my_package.my_module2
my_package.my_module1.info_print1()
my_package.my_module2.info_print2()

2、from

# 导入 方式(2)
from my_package import my_module1
from my_package import my_module2
my_module1.info_print1()
my_module2.info_print2()

3、from

# 导入 方式(3)
from my_package.my_module1 import info_print1
from my_package.my_module2 import info_print2
info_print1()
info_print2()

方式二:

tip:必须在__init__.py文件中添加__all__ = [],控制允许导入的模块列表

from 包名 import *
模块名.目标
# 通过__all__变量,控制import *
from my_package import *
my_module1.info_print1()
# my_module2.info_print2()

小结

  1. 什么是python的包?
    包就是一个文件夹,里面可以存放许多python的模块(代码文件),通过包,在逻辑上将一批模块归为一类,方便使用。
  2. __init__.py文件的作用?
    创建包会默认自动创建的文件,通过这个文件来表示一个文件夹是python的包,而非普通文件夹
  3. __all__变量的作用?
    同模块中学习到的是一个作用,控制import * 能够导入的内容
目录
相关文章
|
3天前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
6天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
23 0
|
5天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
24 7
|
21天前
|
网络协议 数据库连接 Python
python知识点100篇系列(17)-替换requests的python库httpx
【10月更文挑战第4天】Requests 是基于 Python 开发的 HTTP 库,使用简单,功能强大。然而,随着 Python 3.6 的发布,出现了 Requests 的替代品 —— httpx。httpx 继承了 Requests 的所有特性,并增加了对异步请求的支持,支持 HTTP/1.1 和 HTTP/2,能够发送同步和异步请求,适用于 WSGI 和 ASGI 应用。安装使用 httpx 需要 Python 3.6 及以上版本,异步请求则需要 Python 3.8 及以上。httpx 提供了 Client 和 AsyncClient,分别用于优化同步和异步请求的性能。
python知识点100篇系列(17)-替换requests的python库httpx
|
5天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
16 3
|
8天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
27 5
|
7天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
19 1
|
16天前
|
数据可视化 数据挖掘 Python
Seaborn 库创建吸引人的统计图表
【10月更文挑战第11天】本文介绍了如何使用 Seaborn 库创建多种统计图表,包括散点图、箱线图、直方图、线性回归图、热力图等。通过具体示例和代码,展示了 Seaborn 在数据可视化中的强大功能和灵活性,帮助读者更好地理解和应用这一工具。
30 3
|
5天前
|
文字识别 自然语言处理 API
Python中的文字识别利器:pytesseract库
`pytesseract` 是一个基于 Google Tesseract-OCR 引擎的 Python 库,能够从图像中提取文字,支持多种语言,易于使用且兼容性强。本文介绍了 `pytesseract` 的安装、基本功能、高级特性和实际应用场景,帮助读者快速掌握 OCR 技术。
25 0
|
22天前
|
Linux Android开发 开发者
【Python】GUI:Kivy库环境安装与示例
这篇文章介绍了 Kivy 库的安装与使用示例。Kivy 是一个开源的 Python 库,支持多平台开发,适用于多点触控应用。文章详细说明了 Kivy 的主要特点、环境安装方法,并提供了两个示例:一个简单的 Hello World 应用和一个 BMI 计算器界面。
33 0