前言
本篇文章主要介绍k8s集群中部署prometheus,并且配置prometheus的动态、静态服务发现,实现监控容器、物理节点、service、pod等资源指标,配置prometheus的web ui界面,下篇将接着这篇内容介绍Grafana和Alertmanager,并在Grafana的web界面展示prometheus的监控指标,然后通过alertmanager实现监控报警。
prometheus简介
Prometheus是一个开源的系统监控和报警系统,现在已经加入到CNCF基金会,成为继k8s之后第二个在CNCF托管的项目,在kubernetes容器管理系统中,通常会搭配prometheus进行监控,同时也支持多种exporter采集数据,还支持pushgateway进行数据上报,Prometheus性能足够支撑上万台规模的集群。
prometheus特点
1.多维度数据模型
时间序列数据由metrics名称和键值对来组成 可以对数据进行聚合,切割等操作 所有的metrics都可以设置任意的多维标签。
2.灵活的查询语言(PromQL)
可以对采集的metrics指标进行加法,乘法,连接等操作;
3.可以直接在本地部署,不依赖其他分布式存储;
4.通过基于HTTP的pull方式采集时序数据;
5.可以通过中间网关pushgateway的方式把时间序列数据推送到prometheus server端;
6.可通过服务发现或者静态配置来发现目标服务对象(targets)。
7.有多种可视化图像界面,如Grafana等。
8.高效的存储,每个采样数据占3.5 bytes左右,300万的时间序列,30s间隔,保留60天,消耗磁盘大概200G。
prometheus组件介绍
1.Prometheus Server: 用于收集和存储时间序列数据。
2.Client Library: 客户端库,检测应用程序代码,当Prometheus抓取实例的HTTP端点时,客户端库会将所有跟踪的metrics指标的当前状态发送到prometheus server端。
3.Exporters: prometheus支持多种exporter,通过exporter可以采集metrics数据,然后发送到prometheus server端
4.Alertmanager: 从 Prometheus server 端接收到 alerts 后,会进行去重,分组,并路由到相应的接收方,发出报警,常见的接收方式有:电子邮件,微信,钉钉, slack等。
5.Grafana:监控仪表盘
6.pushgateway: 各个目标主机可上报数据到pushgatewy,然后prometheus server统一从pushgateway拉取数据。
prometheus架构图
从上图可发现,Prometheus整个生态圈组成主要包括prometheus server,Exporter,pushgateway,alertmanager,grafana,Web ui界面,Prometheus server由三个部分组成,Retrieval,Storage,PromQL
Retrieval负责在活跃的target主机上抓取监控指标数据
Storage存储主要是把采集到的数据存储到磁盘中
PromQL是Prometheus提供的查询语言模块。
prometheus工作流程:
1. Prometheus server可定期从活跃的(up)目标主机上(target)拉取监控指标数据,目标主机的监控数据可通过配置静态job或者服务发现的方式被prometheus server采集到,这种方式默认的pull方式拉取指标;也可通过pushgateway把采集的数据上报到prometheus server中;还可通过一些组件自带的exporter采集相应组件的数据;
2.Prometheus server把采集到的监控指标数据保存到本地磁盘或者数据库;
3.Prometheus采集的监控指标数据按时间序列存储,通过配置报警规则,把触发的报警发送到alertmanager
4.Alertmanager通过配置报警接收方,发送报警到邮件,微信或者钉钉等
5.Prometheus 自带的web ui界面提供PromQL查询语言,可查询监控数据
6.Grafana可接入prometheus数据源,把监控数据以图形化形式展示出
安装node-exporter组件
机器规划:
我的实验环境使用的k8s集群是一个master节点和一个node节点
master节点的机器ip是192.168.0.6,主机名是master1
node节点的机器ip是192.168.0.56,主机名是node1
master高可用集群安装可参考如下文章:
k8s1.18多master节点高可用集群安装-超详细中文官方文档
node-exporter是什么?
采集机器(物理机、虚拟机、云主机等)的监控指标数据,能够采集到的指标包括CPU, 内存,磁盘,网络,文件数等信息。
安装node-exporter组件,在k8s集群的master1节点操作
cat >node-export.yaml <<EOF apiVersion: apps/v1 kind: DaemonSet metadata: name: node-exporter namespace: monitor-sa labels: name: node-exporter spec: selector: matchLabels: name: node-exporter template: metadata: labels: name: node-exporter spec: hostPID: true hostIPC: true hostNetwork: true containers: - name: node-exporter image: prom/node-exporter:v0.16.0 ports: - containerPort: 9100 resources: requests: cpu: 0.15 securityContext: privileged: true args: - --path.procfs - /host/proc - --path.sysfs - /host/sys - --collector.filesystem.ignored-mount-points - '"^/(sys|proc|dev|host|etc)($|/)"' volumeMounts: - name: dev mountPath: /host/dev - name: proc mountPath: /host/proc - name: sys mountPath: /host/sys - name: rootfs mountPath: /rootfs tolerations: - key: "node-role.kubernetes.io/master" operator: "Exists" effect: "NoSchedule" volumes: - name: proc hostPath: path: /proc - name: dev hostPath: path: /dev - name: sys hostPath: path: /sys - name: rootfs hostPath: path: / EOF
#通过kubectl apply更新node-exporter
kubectl apply -f node-export.yaml
#查看node-exporter是否部署成功
kubectl get pods -n monitor-sa
显示如下,看到pod的状态都是running,说明部署成功
NAME READY STATUS RESTARTS AGE node-exporter-9qpkd 1/1 Running 0 89s node-exporter-zqmnk 1/1 Running 0 89s
通过node-exporter采集数据
curl http://主机ip:9100/metrics
#node-export默认的监听端口是9100,可以看到当前主机获取到的所有监控数据,截取一部分,如下
# HELP node_cpu_seconds_total Seconds the cpus spent in each mode. # TYPE node_cpu_seconds_total counter node_cpu_seconds_total{cpu="0",mode="idle"} 56136.98 # HELP node_load1 1m load average. # TYPE node_load1 gauge node_load1 0.58 #HELP:解释当前指标的含义,上面表示在每种模式下node节点的cpu花费的时间,以s为单位 #TYPE:说明当前指标的数据类型,上面是counter类型 node_load1该指标反映了当前主机在最近一分钟以内的负载情况,系统的负载情况会随系统资源的使用而变化,因此node_load1反映的是当前状态,数据可能增加也可能减少,从注释中可以看出当前指标类型为gauge(标准尺寸) node_cpu_seconds_total{cpu="0",mode="idle"} : cpu0上idle进程占用CPU的总时间,CPU占用时间是一个只增不减的度量指标,从类型中也可以看出node_cpu的数据类型是counter(计数器) counter计数器:只是采集递增的指标 gauge标准尺寸:统计的指标可增加可减少
k8s集群中部署prometheus
1.创建namespace、sa账号,在k8s集群的master节点操作
#创建一个monitor-sa的名称空间
kubectl create ns monitor-sa
#创建一个sa账号
kubectl create serviceaccount monitor -n monitor-sa
#把sa账号monitor通过clusterrolebing绑定到clusterrole上
kubectl create clusterrolebinding monitor-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin --serviceaccount=monitor-sa:monitor
2.创建数据目录
#在k8s集群的任何一个node节点操作,因为我的k8s集群只有一个node节点node1,所以我在node1上操作如下命令:
mkdir /data
chmod 777 /data/
3.安装prometheus,以下步骤均在在k8s集群的master1节点操作
1)创建一个configmap存储卷,用来存放prometheus配置信息
cat >prometheus-cfg.yaml <<EOF --- kind: ConfigMap apiVersion: v1 metadata: labels: app: prometheus name: prometheus-config namespace: monitor-sa data: prometheus.yml: | global: scrape_interval: 15s scrape_timeout: 10s evaluation_interval: 1m scrape_configs: - job_name: 'kubernetes-node' kubernetes_sd_configs: - role: node relabel_configs: - source_labels: [__address__] regex: '(.*):10250' replacement: '${1}:9100' target_label: __address__ action: replace - action: labelmap regex: __meta_kubernetes_node_label_(.+) - job_name: 'kubernetes-node-cadvisor' kubernetes_sd_configs: - role: node scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - action: labelmap regex: __meta_kubernetes_node_label_(.+) - target_label: __address__ replacement: kubernetes.default.svc:443 - source_labels: [__meta_kubernetes_node_name] regex: (.+) target_label: __metrics_path__ replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor - job_name: 'kubernetes-apiserver' kubernetes_sd_configs: - role: endpoints scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name] action: keep regex: default;kubernetes;https - job_name: 'kubernetes-service-endpoints' kubernetes_sd_configs: - role: endpoints relabel_configs: - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape] action: keep regex: true - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme] action: replace target_label: __scheme__ regex: (https?) - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path] action: replace target_label: __metrics_path__ regex: (.+) - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port] action: replace target_label: __address__ regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 - action: labelmap regex: __meta_kubernetes_service_label_(.+) - source_labels: [__meta_kubernetes_namespace] action: replace target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_service_name] action: replace target_label: kubernetes_name EOF
注意:通过上面命令生成的promtheus-cfg.yaml文件会有一些问题,和1和1和2这种变量在文件里没有,需要在k8s的master1节点打开promtheus-cfg.yaml文件,手动把和1和1和2这种变量写进文件里,promtheus-cfg.yaml文件需要手动修改部分如下:
22行的replacement: ':9100'变成replacement: '${1}:9100' 42行的replacement: /api/v1/nodes//proxy/metrics/cadvisor变成 replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor 73行的replacement: 变成replacement: $1:$2
#通过kubectl apply更新configmap
kubectl apply -f prometheus-cfg.yaml
2)通过deployment部署prometheus
cat >prometheus-deploy.yaml <<EOF --- apiVersion: apps/v1 kind: Deployment metadata: name: prometheus-server namespace: monitor-sa labels: app: prometheus spec: replicas: 1 selector: matchLabels: app: prometheus component: server #matchExpressions: #- {key: app, operator: In, values: [prometheus]} #- {key: component, operator: In, values: [server]} template: metadata: labels: app: prometheus component: server annotations: prometheus.io/scrape: 'false' spec: nodeName: node1 serviceAccountName: monitor containers: - name: prometheus image: prom/prometheus:v2.2.1 imagePullPolicy: IfNotPresent command: - prometheus - --config.file=/etc/prometheus/prometheus.yml - --storage.tsdb.path=/prometheus - --storage.tsdb.retention=720h ports: - containerPort: 9090 protocol: TCP volumeMounts: - mountPath: /etc/prometheus/prometheus.yml name: prometheus-config subPath: prometheus.yml - mountPath: /prometheus/ name: prometheus-storage-volume volumes: - name: prometheus-config configMap: name: prometheus-config items: - key: prometheus.yml path: prometheus.yml mode: 0644 - name: prometheus-storage-volume hostPath: path: /data type: Directory EOF
注意:在上面的prometheus-deploy.yaml文件有个nodeName字段,这个就是用来指定创建的这个prometheus的pod调度到哪个节点上,我们这里让nodeName=node1,也即是让pod调度到node1节点上,因为node1节点我们创建了数据目录/data,所以大家记住:你在k8s集群的哪个节点创建/data,就让pod调度到哪个节点。
#通过kubectl apply更新prometheus
kubectl apply -f prometheus-deploy.yaml
#查看prometheus是否部署成功
kubectl get pods -n monitor-sa
显示如下,可看到pod状态是running,说明prometheus部署成功
NAME READY STATUS RESTARTS AGE node-exporter-9qpkd 1/1 Running 0 76m node-exporter-zqmnk 1/1 Running 0 76m prometheus-server-85dbc6c7f7-nsg94 1/1 Running 0 6m7
3)给prometheus pod创建一个service
cat > prometheus-svc.yaml << EOF --- apiVersion: v1 kind: Service metadata: name: prometheus namespace: monitor-sa labels: app: prometheus spec: type: NodePort ports: - port: 9090 targetPort: 9090 protocol: TCP selector: app: prometheus component: server EOF
#通过kubectl apply 更新service
kubectl apply -f prometheus-svc.yaml
#查看service在物理机映射的端口
kubectl get svc -n monitor-sa
显示如下:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE prometheus NodePort 10.96.45.93 <none> 9090:31043/TCP 50s
通过上面可以看到service在宿主机上映射的端口是31043,这样我们访问k8s集群的master1节点的ip:31043,就可以访问到prometheus的web ui界面了
#访问prometheus web ui界面
火狐浏览器输入如下地址:
http://192.168.0.6:31043/graph
可看到如下页面:
#点击页面的Status->Targets,可看到如下,说明我们配置的服务发现可以正常采集数据
prometheus热更新
#为了每次修改配置文件可以热加载prometheus,也就是不停止prometheus,就可以使配置生效,如修改prometheus-cfg.yaml,想要使配置生效可用如下热加载命令:
curl -X POST http://10.244.1.66:9090/-/reload
#10.244.1.66是prometheus的pod的ip地址,如何查看prometheus的pod ip,可用如下命令:
kubectl get pods -n monitor-sa -o wide | grep prometheus
显示如下, 10.244.1.7就是prometheus的ip
prometheus-server-85dbc6c7f7-nsg94 1/1 Running 0 29m 10.244.1.7 node1 <none> <none>
#热加载速度比较慢,可以暴力重启prometheus,如修改上面的prometheus-cfg.yaml文件之后,可执行如下强制删除:
kubectl delete -f prometheus-cfg.yaml
kubectl delete -f prometheus-deploy.yaml
然后再通过apply更新:
kubectl apply -f prometheus-cfg.yaml
kubectl apply -f prometheus-deploy.yaml
注意:
线上最好热加载,暴力删除可能造成监控数据的丢失
看到这我们就已经把prometheus部署和配置成功了,但不要着急,这是连载文章,下篇将接着这篇内容介绍Grafana和Alertmanager,并在Grafana的web界面展示prometheus的监控指标,并且通过alertmanager实现报警,请继续关注我,我会把最新知识持续不间断的分享给大家。