【CAMEL】Communicative Agents for “Mind”Exploration of Large Scale Language Model Society

简介: 【CAMEL】Communicative Agents for “Mind”Exploration of Large Scale Language Model Society

所解决的问题?

目前的语言模型还是需要人类的输入来进行指导对话,在时间开销上会很大。这篇文章提出一种新的智能体通信框架角色扮演(role-playing)。作者采用了一个叫做初始Prompt的东西(inception prompting)来做这样一件事情。也就是只在开始人为给定prompt,之后就全靠智能体自己去对话探索了。

人话来说就是,目前主流的基于大模型的应用都是人肉去调prompt,这个非常耗费开销。作者提出了一种方法,让智能体之间进行对话,进而自动去完成任务,而过程中无需人为干预。

背景

目前多智能体间的通信也是研究的一个热点问题,但是主流的通信是基于一些只有智能体才能看懂的向量。而人类语言间的通信能否作用到计算机里面呢?实现智能体间的通信?或者更近一步实现人机通信,人机协作?

知识蒸馏可以实现知识从老师到学生之间的传递,大体也是可以被分成三类:Response-based, Feature-based, and Relation-based。更多的是去抓住模型中的知识,而作者所提出来的方法,是去处理对话智能体“思想”上的探索。

所采用的方法?

大体上是有两个智能体,也就是大语言模型:AI assistant和AI user。当给定一个初始的任务时,一个task-specifier agent将会将任务拆解,描绘更加细致的任务给到AI assistant和AI user,然后他两就开始对话完成任务了:

另外作者还提及到了一些在设计prompt的时候需要注意的点:

  1. 在两个智能体对话的时候,常常会角色互换,因此需要好好设计一下这个prompt,比如对于AI assistant,就告诉他,好好执行就行了,不要提问题。
  2. 另一个是assistan repeats,assistant会重复user‘s 的prompt。
  3. 虚假回复,比如assistant保证会完成某个任务,实际上没有完成。
  4. 无限消息循环,智能体之间的消息无限循环。

取得的效果?

作者也就是对这个实验结果做了一些分析,可视化等等就完事了。

问题

所出版信息?作者信息?

  • King Abdullah University of Science and Technology (KAUST)

参考链接

相关文章
|
7月前
|
人工智能 搜索推荐
「社会实验室」成真!SocioVerse:复旦联合小红书开源社会模拟世界模型,用AI预演群体行为
SocioVerse是由复旦大学联合小红书等机构开源的社会模拟框架,基于大语言模型和千万级真实用户数据构建,能精准模拟群体行为并预测社会事件演化趋势。
527 2
「社会实验室」成真!SocioVerse:复旦联合小红书开源社会模拟世界模型,用AI预演群体行为
|
5月前
|
Web App开发
如何彻底解决 Edge 浏览器无法安装扩展程序的问题
Edge浏览器扩展安装失败(如提示“程序包无效:CRX_REQUIRED_PROOF_MISSING”或按钮灰色无法启用)时,可尝试以下两种解决方法: **方法一(推荐):** 通过下载并配置 `msedge.adm` 策略文件,在本地组策略编辑器中添加扩展ID白名单,重启浏览器后即可正常使用。 **方法二:** 将扩展文件从 `.crx` 改为 `.zip`,拖拽至扩展管理页面或解压后使用“加载解压缩的扩展”功能安装(但可能被自动删除)。
1713 2
|
安全 网络协议 网络安全
端口转发:解锁网络访问的新维度
端口转发技术,简化网络数据流,用于家庭至企业服务器场景。它隐藏内部网络服务,提供远程访问、个人网站公开、NAT穿透及安全的VPN连接。设置涉及路由器管理界面,添加转发规则,但需注意安全风险,仅开放必要端口并加强内部安全措施。了解和善用端口转发,提升网络服务可达性与安全性。
912 5
|
机器学习/深度学习 编解码 PyTorch
训练Sora模型,你可能需要这些(开源代码,模型,数据集及算力评估)
在之前的文章《复刻Sora有多难?一张图带你读懂Sora的技术路径》,《一文看Sora技术推演》我们总结了Sora模型上用到的一些核心技术和论文,今天这篇文章我们将整理和总结现有的一些开源代码、模型、数据集,以及初步训练的算力评估,希望可以帮助到国内的创业公司和个人开发者展开更深的研究。
|
供应链 安全 区块链
掌握区块链技术:从基础到进阶的全方位指南
掌握区块链技术:从基础到进阶的全方位指南
|
存储 人工智能 NoSQL
拆解LangChain的大模型记忆方案
之前我们聊过如何使用LangChain给LLM(大模型)装上记忆,里面提到对话链ConversationChain和MessagesPlaceholder,可以简化安装记忆的流程。下文来拆解基于LangChain的大模型记忆方案。
拆解LangChain的大模型记忆方案
|
机器学习/深度学习 XML 自然语言处理
机器学习实战(一):Document clustering 文档聚类
文档聚类是指根据文档的文本和语义背景将其归入不同的组别。它是一种无监督的技术,因为我们没有文件的标签,它在信息检索和搜索引擎中得到了应用。
463 0
|
SQL 数据库 关系型数据库
【SQL注入】 注入神器sqlmap的使用
数据库 SQL注入漏洞 sqlmap
673 2
|
存储 机器学习/深度学习 算法
10个大型语言模型(LLM)常见面试问题和答案解析
今天我们来总结以下大型语言模型面试中常问的问题
748 0
|
负载均衡 安全 网络安全
下一篇
oss云网关配置