Python3,听说这个第三方库竟碾压python自带JSON库。

简介: Python3,听说这个第三方库竟碾压python自带JSON库。

1、引言

小屌丝:鱼哥,学习python,必须要掌握哪些库?

小鱼:这要看你从事哪方面的开发了。

小屌丝:这还有关系呢?

小鱼:那肯定的啊,

  • 如果你学习AI,就需要掌握Scikit-learn库、Pytorch、Tensorflow等,
  • 如果你学习数据分析,那需要掌握Pandas、Numpy 等
  • 如果学习爬虫开发,那就需要掌握request、BeautifulSoup、lxml、re等

小屌丝:鱼哥,那你说,我把json库玩的特别溜,我能不能从事python后端开发??

小鱼:嗯?? 你确定你json库玩的特别溜吗?

小屌丝:那还有假,倒背如流。

小鱼:那正好,有个粉丝提问,json库存储能力差,如何能解决这个问题呢?

小屌丝:额…

小鱼:“略带微笑”… 想一想,该如何回答?

小屌丝:…这个问题,正好是我也想问你的。

小鱼:…好吧。

关于粉丝提问的如何解决json库性能差,功能少等问题,

我们可以换一个思路来理解,

是否有一个第三方josn库,可以解决这些问题呢?

答案是,肯定的。


例如:ujson库、rapidjson、simplejson、orjson等等。


但是在这些json第三方库中,又有一个,性能是碾压其他库的,

小屌丝:难道是 orjson库?

小鱼:嗯,你可算是说对一次了。

接下来,我们就来介绍orjson库。

2、示例实战

因为orjson支持 python版本:3.7 ~ 3.10的所有64的版本。

2.1 安装

凡是涉及第三方库,必须需要安装

老规矩,pip 安装:

pip install orjson

其它安装方式,直接看这两篇:

2.2 序列化

  • orjson 序列化结果是 bytes型
  • json 序列化结果 是 str型

代码示例

# -*- coding:utf-8 -*-
# @Time   : 2022-07-03
# @Author : carl_DJ
import json
import orjson
import  random
import time
''' 
序列化
orjson 序列化结果是 bytes型
json 序列化结果 是 str型
'''
# 序列化100W个典元素的列表进行序列化
demo_json = [
    {
    'id' : 99999,
    'value': random.uniform(0,1000)
    }
    for i in range(1000000)
]

运行结果

我们可以看到,json运行结果1.73s

orjson运行结果191ms

结果跟我们的预期一样,奈斯。

2.3 反序列化

将JSON数据转换为Python对象的过程我们称之为反序列化,使用orjson.loads()进行操作,可接受bytes、str型等常见类型,

我们依然使用上面的代码示例。

代码示例

# -*- coding:utf-8 -*-
# @Time   : 2022-07-03
# @Author : carl_DJ
import json
import orjson
import  random
import time
''' 
反序列化
'''
# 序列化100W个典元素的列表进行序列化
demo_json = [
    {
    'id' : 99999,
    'value': random.uniform(0,1000)
    }
    for i in range(1000000)
]

运行结果

2.4 OPTION选项

2.4.1 OPT_INDENT_2

orjson的序列化操作中,可以通过参数option来配置诸多额外功能,

例如:

配置option=orjson.OPT_INDENT_2,

可以为序列化后的JSON结果添加2个空格的缩进美化效果,从而弥补其没有参数indent的不足,

代码示例

# -*- coding:utf-8 -*-
# @Time   : 2022-07-03
# @Author : carl_DJ
import json
import orjson
demo_json = {"星星点灯":{"王心凌组":"张天爱、阿娇、阿Sa、吴谨言"},"玉":{"谭维维组":"薛凯琪、郭采洁、毛俊杰、齐溪"},"无名的人":{"郑秀妍组":["朱洁静","张俪","王紫璇","张歆艺"]}}
#默认输出结果
print(f'未配置option时,输出结果:{orjson.dumps(demo_json).decode()}')
#设置OPT_INDENT_2
print(f'已配置option后,输出结果:{orjson.dumps(demo_json,option=orjson.OPT_INDENT_2).decode()}')

运行结果

2.4.2 OPTION组合

当序列化操作需要涉及多种option功能时,则可以使用|运算符来组合多个option参数即可:

代码示例

# -*- coding:utf-8 -*-
# @Time   : 2022-07-03
# @Author : carl_DJ
import  numpy as np
import json
import orjson
'''
组合多种option
'''
demo_json = {
    'zz':np.random.randint(1,10,(2,3)),
    'xx':np.random.randint(1,10,(2,3)),
    'aa':np.random.randint(1,10,(2,3))
    }
print(orjson.dumps(demo_json,option=orjson.OPT_SERIALIZE_NUMPY | orjson.OPT_SORT_KEYS))

运行结果

2.4.3 OPT_SERIALIZE_NUMPY

orjson的一大重要特性是其可以将包含numpy中数据结构对象的复杂对象,兼容性地转换为JSON中的数组,配合option=orjson.OPT_SERIALIZE_NUMPY即可:

代码示例

# -*- coding:utf-8 -*-
# @Time   : 2022-07-03
# @Author : carl_DJ
import  numpy as np
import json
import orjson
'''
OPT_SERIALIZE_NUMPY
'''
demo_json = {
    'np':np.random.randint(1,10,(5,10))
}
demo_json
orjson.dumps(demo_json,option=orjson.OPT_SERIALIZE_NUMPY)

运行结果

2.4.4 OPT_SERIALIZE_UUID

除了可以自动序列化numpy对象外,orjson还支持对UUID对象进行转换,在orjson 3.0之前的版本中,需要配合option=orjson.OPT_SERIALIZE_UUID,

但是小鱼用的是3.9的版本,所以不需要额外配置参数。

代码示例

# -*- coding:utf-8 -*-
# @Time   : 2022-07-03
# @Author : carl_DJ
import  numpy as np
import uuid
import json
import orjson
'''
OPT_SERIALIZE_UUID
'''
demo_json = {
    'uuid':uuid.uuid4()
}
demo_json
orjson.dumps(demo_json)

运行结果

2.4.5 OPT_SORT_KEYS

通过配合参数option=orjson.OPT_SORT_KEYS,可以对序列化后的结果自动按照键进行排序。

代码示例

# -*- coding:utf-8 -*-
# @Time   : 2022-07-03
# @Author : carl_DJ
import json
import orjson
'''
OPT_SORT_KEYS
'''
#未设置排序
orjson.dumps({"c":1,"b":11,"a":6})
#设置排序
orjson.dumps({"c":1,"b":11,"a":6},option=orjson.OPT_SORT_KEYS)

2.5 自定义处理策略

2.5.1 对数据进行脱敏

如果需要序列化的对象中涉及到dataclass自定义数据结构时,

可以使用orjson.OPT_PASSTHROUGH_DATACLASS,

再通过对default参数传入自定义处理函数,来实现更为自由的数据转换逻辑。

代码示例

# -*- coding:utf-8 -*-
# @Time   : 2022-07-03
# @Author : carl_DJ
from dataclasses import dataclass
import uuid
import orjson
@dataclass
class User:
    id:str
    tel_numb:int
def default(obj):
    if isinstance(obj,User):
        tel_numb_st = str(obj.tel_numb)
        return {
            'id':obj.id,
            'tel_numb':f'{tel_numb_st[:3]}xxxx{tel_numb_st[-4:]}'
        }
    raise  TypeError
demo_json = {
    'user':User(id=str(uuid.uuid4()),tel_numb=13666667777)
}
orjson.dumps(demo_json,
             option=orjson.OPT_PASSTHROUGH_DATACLASS,
             default=default)

运行结果

2.5.2 日期自定义转换

代码示例

# -*- coding:utf-8 -*-
# @Time   : 2022-07-03
# @Author : carl_DJ
import orjson
from datetime import datetime
def default(obj):
    if isinstance(obj,datetime):
        return obj.strftime('%Y年%m月%d日')
    raise TypeError
demo_json = {
    'now':datetime.now()
}
orjson.dumps(demo_json,
             option=orjson.OPT_PASSTHROUGH_DATETIME,
             default=default).decode()

运行结果

3、总结

看到这里,今天的分享差不多就要结束了。

关于orjson库的知识,也讲的差不多了。

如果orjson能解决的问题,还是建议使用orjson这个第三方库。

因为不管是从性能、自由组合配置等都是吊打json库的,

但是,

对数据的处理没有那么高的要求,就是小数据量的处理,那就保持原样即可。

不管怎样,能在工作中解决掉问题,即可。


最后,再唠叨一句:

关注小鱼博客,带你学习更多关于python第三方库的知识。


目录
相关文章
|
17天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
2天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
1月前
|
IDE 开发工具 iOS开发
【10月更文挑战第3天】「Mac上学Python 3」入门篇3 - 安装Python与开发环境配置
本篇将详细介绍如何在Mac系统上安装Python,并配置Python开发环境。内容涵盖Python的安装、pip包管理工具的配置与国内镜像源替换、安装与配置PyCharm开发工具,以及通过PyCharm编写并运行第一个Python程序。通过本篇的学习,用户将完成Python开发环境的搭建,为后续的Python编程工作打下基础。
164 2
【10月更文挑战第3天】「Mac上学Python 3」入门篇3 - 安装Python与开发环境配置
|
21天前
|
JSON JavaScript Java
在Java中处理JSON数据:Jackson与Gson库比较
本文介绍了JSON数据交换格式及其在Java中的应用,重点探讨了两个强大的JSON处理库——Jackson和Gson。文章详细讲解了Jackson库的核心功能,包括数据绑定、流式API和树模型,并通过示例演示了如何使用Jackson进行JSON解析和生成。最后,作者分享了一些实用的代码片段和使用技巧,帮助读者更好地理解和应用这些工具。
在Java中处理JSON数据:Jackson与Gson库比较
|
26天前
|
JSON 数据格式 Python
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
这篇文章介绍了一个Python脚本,用于统计TXT或JSON文件中特定单词的出现次数。它包含两个函数,分别处理文本和JSON文件,并通过命令行参数接收文件路径、目标单词和文件格式。文章还提供了代码逻辑的解释和示例用法。
34 0
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
|
1月前
|
安全 Linux 开发者
|
1月前
|
JSON 数据格式 Python
Python编程:利用JSON模块编程验证用户
Python编程:利用JSON模块编程验证用户
|
2月前
|
JSON API 数据格式
使用Python发送包含复杂JSON结构的POST请求
使用Python发送包含复杂JSON结构的POST请求
|
1月前
|
自然语言处理 搜索推荐 程序员
【Python】如何使用pip,安装第三方库和生成二维码、操作Excel
【Python】如何使用pip,安装第三方库和生成二维码、操作Excel
37 0
|
1月前
|
存储 JSON 数据格式
Python 输入输出与文件处理: io、pickle、json、csv、os.path 模块详解
Python 输入输出与文件处理: io、pickle、json、csv、os.path 模块详解
28 0