机器学习SVM算法原理

简介: 机器学习SVM算法原理

1 定义输入数据

假设给定一个特征空间上的训练集为:

T={(x_1, y_1),(x_2,y_2)…,(x_N,y_N)}T={(x1,y1),(x2,y2)…,(x**N,y**N)}

x_i \in R^n, y_i \in {+1, -1}, i=1,2,…,N.x**iR**n,y**i∈{+1,−1},i=1,2,…,N.

其中,(xi,yi)称为样本点。

  • xi为第i个实例(样本),

yi为的xi标记:

当yi=1时,为xi正例

当yi=-1时,为xi负例

至于为什么正负用(-1,1)表示呢?


其实这里没有太多原理,就是一个标记,你也可以用(2,-3)来标记。只是为了方便,y_i/y_j=y_iy_jyi*/*yj*=y**i∗y**j的过程中刚好可以相等,便于之后的计算。)

2 线性可分支持向量机

给定了上面提出的线性可分训练数据集,通过间隔最大化得到分离超平面为 :y(x)=w^T\Phi(x)+by(x)=w**TΦ(x)+b

相应的分类决策函数为: f(x)=sign(w^T\Phi(x)+b)f(x)=sig**n(w**TΦ(x)+b)

以上决策函数就称为线性可分支持向量机。

这里解释一下这个东东。

这是某个确定的特征空间转换函数,它的作用是将x映射到更高的维度,它有一个以后我们经常会见到的专有称号**”核函数“**。

比如我们看到的特征有2个: x1,x2,组成最先见到的线性函数可以是: 但也许这两个特征并不能很好地描述数据,于是我们进行维度的转化,变成了:w_1x_1+w_2x_2+w_3x_1x_2+w_4x_12+w_5x_22w1x1+w2x2+w3x1x2+w4x12+w5x22. 于是我们多了三个特征。而这个就是笼统地描述x的映射的。 最简单直接的就是:

以上就是线性可分支持向量机的模型表达式。我们要去求出这样一个模型,或者说这样一个超平面y(x),它能够最优地分离两个集合。

其实也就是我们要去求一组参数(w,b),使其构建的超平面函数能够最优地分离两个集合。

如下就是一个最优超平面:

又比如说这样:

阴影部分是一个“过渡带”,“过渡带”的边界是集合中离超平面最近的样本点落在的地方。

3 SVM的计算过程与算法步骤

3.1 推导目标函数

我们知道了支持向量机是个什么东西了。现在我们要去寻找这个支持向量机,也就是寻找一个最优的超平面。


于是我们要建立一个目标函数。那么如何建立呢?


再来看一下我们的超平面表达式: y(x)=w^T\Phi(x)+by(x)=w**TΦ(x)+b


为了方便我们让:\Phi(x)=xΦ(x)=x


则在样本空间中,划分超平面可通过如下线性方程来描述:w^Tx+b=0wTx+b=0

  • 我们知道为法向量,决定了超平面的方向;
  • b为位移项,决定了超平面和原点之间的距离。
  • 显然,划分超平面可被法向量w和位移b确定,我们把其记为(w,b).

样本空间中任意点x到超平面(w,b)的距离可写成

假设超平面(w, b)能将训练样本正确分类,即对于

  • 若yi=+1,则有;
  • 若yi=-1,则有


如图所示,距离超平面最近的几个训练样本点使上式等号成立,他们被称为“支持向量",

两个异类支持向量到超平面的距离之和为:

它被称为“”间隔“”。

欲找到具有最大间隔的划分超平面,也就是要找到能满足下式中约束的参数w和b,使得 r 最大。

即:


显然,为了最大化间隔,仅需要最大化,这等价于最小化。于是上式可以重写为:

这就是支持向量机的基本型。

拓展:什么是 ||w||?

3.2 目标函数的求解

到这一步,终于把目标函数给建立起来了。

那么下一步自然是去求目标函数的最优值.

因为目标函数带有一个约束条件,所以我们可以用拉格朗日乘子法求解

3.2.1 朗格朗日乘子法

啥是拉格朗日乘子法呢?

拉格朗日乘子法 (Lagrange multipliers)是一种寻找多元函数在一组约束下的极值的方法.

通过引入拉格朗日乘子,可将有 d 个变量与 k 个约束条件的最优化问题转化为具有 d + k 个变量的无约束优化问题求解。

经过朗格朗日乘子法,我们可以把目标函数转换为:

然后我们令:

容易验证,当某个约束条件不满足时,例如,那么显然有 θ(w) = ∞ (只要令 αi = ∞ 即可)。而当所有约束条件都满足时,则有 ,亦即最初要 最小化的量。

因此,在要求约束条件得到满足的情况下最小化 ,实际上等价于直接最小化 θ(w)(当然, 这里也有约束条件, 就是 α i ≥ 0, i = 1, …, n),因为如果约束条件没有得 到满足, θ(w) 会等于无穷大,自然不会是我们所要求的最小值。

具体写出来,目标函数变成了:

这里用 p* 表示这个问题的最优值,且和最初的问题是等价的。如果直接求解,那么一上来便得面对 w 和 b 两个参数,而 α i 又是不等式约束,这个求解过程不好做。

此时,我们可以借助对偶问题进行求解。

3.2.2 对偶问题

因为我们在上面求解的过程中,直接求解 w 和 b 两个参数不方便,所以想办法转换为对偶问题。

我们要将其转换为对偶问题,变成极大极小值问题:


参考资料: https://wenku.baidu.com/view/7bf945361b37f111f18583d049649b6649d70975.html

如何获取对偶函数?

  • 首先我们对原目标函数的w和b分别求导:
  • 原目标函数:
  • 对w求偏导:
  • 对b求偏导:
  • 然后将以上w和b的求导函数重新代入原目标函数的w和b中,得到的就是原函数的对偶函数:

  • 这个对偶函数其实求的是:中的minL(w,b)min**L(w,b)部分(因为对w,b求了偏导)。
  • 于是现在要求的是这个函数的极大值max(a),写成公式就是:

  • 好了,现在我们只需要对上式求出极大值α,然后将α代入w求偏导的那个公式:

  • 从而求出w.
  • 将w代入超平面的表达式,计算b值;
  • 现在的w,b就是我们要寻找的最优超平面的参数。

3.2.3 整体流程确定

我们用数学表达式来说明上面的过程:

  • 1)首先是求的极大值。即

注意有两个约束条件。

  • 对目标函数添加负号,转换成求极小值:

  • 2)计算上面式子的极值求出 α*;
  • 3)α* 代入,计算w,b

  • 4)求得超平面:

  • 5)求得分类决策函数:

4 举例

给定3个数据点:正例点x1=(3,3),x2=(4,3),负例点x3=(1,1),求线性可分支持向量机。 三个点画出来:

  1. 首先确定目标函数

  1. 求得目标函数的极值
  • 原式:
  • 把数据代入:
  • 由于:
  • 化简可得:

对α1,α2 求偏导并令其为0,易知s(α1, α2)在点(1.5, -1)处取极值。

而该点不满足条件α2 >= 0,所以,最小值在边界上达到。

当α1=0 时,最小值s(0,\frac{2}{13})=-\frac{2}{13}=-0.1538s(0,132)=−132=−0.1538

当α2=0 时,最小值s(\frac{1}{4},0)=-\frac{1}{4}=-0.25s(41,0)=−41=−0.25

于是,s(α1, α2)在α1=1/4 , α2=0时达到最小,此时:\alpha_3 = \alpha_1+\alpha_2 = \frac{1}{4}α3=α1+α2=41

  1. 将求得的极值代入从而求得最优参数w,b
  • 对应的点x1, x3就是支持向量机
  • 代入公式:
  • 将α结果代入求解:



选择α的一个支持向量的正分量αj>0进行计算

  • 平面方程为:0.5x_1+0.5x_2-2=00.5x1+0.5x2−2=0
  1. 因此得到分离超平面为: 0.5x_1+0.5x_2-2=00.5x1+0.5x2−2=0
  2. 得到分离决策函数为:f(x)=sign(0.5x_1+0.5x_2-2)f(x)=sig**n(0.5x1+0.5x2−2)


ps:参考的另一种计算方式: https://blog.csdn.net/zhizhjiaodelaoshu/article/details/97112073

5 小结

  • SVM中目标函数
  • SVM中目标函数的求解过程
  • 1)首先是求的极大值。即:

注意有两个约束条件。

  • 对目标函数添加符号,转换成求极小值:

  • 2)计算上面式子的极值求出α*;
  • 3)将α*代入,计算w,b

  • 4)求得超平面:

  • 5)求得分类决策函数:

目录
相关文章
|
2天前
|
搜索推荐 Shell
解析排序算法:十大排序方法的工作原理与性能比较
解析排序算法:十大排序方法的工作原理与性能比较
14 9
|
2月前
|
机器学习/深度学习 算法 数据挖掘
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
|
21天前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
24 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
1天前
|
机器学习/深度学习 算法 数据可视化
【机器学习】ID3、C4.5、CART 算法
【机器学习】ID3、C4.5、CART 算法
|
1天前
|
机器学习/深度学习 人工智能 算法
【机器学习】决策树算法
【机器学习】决策树算法
|
1月前
|
机器学习/深度学习 数据采集 算法
数据挖掘和机器学习算法
数据挖掘和机器学习算法
|
1月前
|
机器学习/深度学习 算法 Python
群智能算法:深入解读人工水母算法:原理、实现与应用
近年来,受自然界生物行为启发的优化算法备受关注。人工水母算法(AJSA)模拟水母在海洋中寻找食物的行为,是一种新颖的优化技术。本文详细解读其原理及实现步骤,并提供代码示例,帮助读者理解这一算法。在多模态、非线性优化问题中,AJSA表现出色,具有广泛应用前景。
|
2月前
|
前端开发 算法 JavaScript
React原理之Diff算法
【8月更文挑战第24天】
|
1月前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
1月前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
182 1