利用NumPy和Pandas进行机器学习数据处理与分析

简介: 利用NumPy和Pandas进行机器学习数据处理与分析

🍀Numpy介绍

在进行科学计算和数据分析时,处理大量数据和进行高效的数值计算是不可或缺的。为了满足这些需求,Python语言提供了一个被广泛使用的库——Numpy。Numpy是Numerical Python的缩写,它为Python提供了功能强大的多维数组对象和一组用于处理这些数组的函数。

本文将介绍Numpy的基本语法,包括数组的创建、索引和切片、数学运算、广播和聚合等功能,以帮助读者快速上手和熟练使用Numpy进行数值计算。


🍀数组的创建

Numpy的核心对象是ndarray,它是一个多维数组对象。我们可以使用Numpy提供的函数创建数组,例如

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(arr)

运行结果如下


🍀索引和切片

通过索引和切片操作,我们可以访问和修改数组中的元素。Numpy的索引从0开始,可以使用整数、切片或布尔数组作为索引,例如

print(arr[0])  # 输出第一个元素
print(arr[1:3])  # 输出第二个和第三个元素
print(arr[arr > 3])  # 使用布尔数组进行索引

运行结果如下


🍀数学运算

Numpy提供了丰富的数学函数和运算符,可以对数组进行各种数值计算。例如,可以对数组进行加减乘除、求幂、取余等运算

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
print(a + b)  # 数组相加
print(a * 2)  # 数组乘以常数
print(np.sin(a))  # 三角函数运算

运行结果如下

🍀广播

Numpy的广播功能使得对不同形状的数组进行运算变得简单。当两个数组的形状不同时,Numpy会自动调整数组的形状,使它们能够进行元素级别的运算

a = np.array([[1, 2, 3], [4, 5, 6]])
b = np.array([1, 2, 3])
print(a + b)  # 广播运算

运行结果如下

🍀聚合操作

Numpy提供了各种聚合函数,可以对数组的元素进行统计分析。例如,可以计算数组的和、平均值、最大值、最小值等

a = np.array([1, 2, 3, 4, 5])
print(np.sum(a))  # 计算数组元素的和
print(np.mean(a))  # 计算数组元素的平均值
print(np.max(a))  # 计算数组元素的最大值
print(np.min(a))  # 计算数组元素的最小值

运行结果如下

🍀Pandas介绍

在机器学习领域,数据处理是非常重要的一环。而Pandas作为Python中最受欢迎的数据处理库之一,提供了丰富的工具和灵活的语法,使得数据清洗、转换和探索变得简单高效。本篇博客将介绍Pandas的基本语法,以及如何利用Pandas进行数据处理,从而为机器学习任务打下坚实的基础。

🍀什么是Series?

Series是pandas中的一维标记数组。它类似于Python中的列表或数组,但提供了更多的功能和灵活性。我们可以使用Series来存储和操作单个列的数据。

首先,让我们导入pandas库并创建一个简单的Series:

import pandas as pd
# 创建一个Series
data = pd.Series([1, 3, 5, np.nan, 6, 8])
print(data)

运行结果如下

在这个例子中,我们创建了一个包含整数和NaN值的Series。每个值都有一个与之关联的索引,它们以0为起始。Series的数据类型由pandas自动推断得出。

🍀什么是DataFrame?

DataFrame是pandas中的二维表格数据结构,类似于Excel中的工作表或数据库中的表。它由行和列组成,每列可以有不同的数据类型。DataFrame是pandas中最常用的数据结构,我们可以使用它来处理和分析结构化数据。

下面是一个创建DataFrame的例子:

# 创建一个字典
data = {'Name': ['John', 'Emma', 'Mike', 'Sophia'],
        'Age': [25, 28, 22, 30],
        'City': ['London', 'New York', 'Paris', 'Tokyo']}
# 创建DataFrame
df = pd.DataFrame(data)
print(df)

运行结果如下

在这个例子中,我们使用一个字典来创建DataFrame。字典的键表示列名,对应的值是列表类型,表示该列的数据。我们可以看到DataFrame具有清晰的表格结构,并且每个列都有相应的标签,方便阅读

🍀访问和筛选数据

我们可以使用索引、标签或条件来访问和筛选数据。例如,要访问DataFrame中的一列数据,可以使用列名:

# 访问列
print(df['Name'])

运行结果如下

要访问DataFrame中的一行数据,可以使用iloc和loc方法:

# 访问行
print(df.iloc[0])  # 根据索引访问
print(df.loc[0])  # 根据标签访问

运行结果如下

要根据条件筛选数据,可以使用布尔索引:要根据条件筛选数据,可以使用布尔索引:

# 筛选数据
filtered_df = df[df['Age'] > 25]
print(filtered_df)

运行结果如下

🍀添加和删除数据

我们可以使用相应的方法向Series或DataFrame中添加或删除数据。例如,要添加一列数据,可以将一个新的Series赋值给DataFrame的一个新列名

# 添加列
df['Gender'] = ['Male', 'Female', 'Male', 'Female']
print(df)

运行结果如下

要删除列或行,可以使用drop方法

# 删除列
df = df.drop('City', axis=1)
print(df)

运行结果如下

# 删除行
df = df.drop(0)
print(df)

运行结果如下

挑战与创造都是很痛苦的,但是很充实。


相关文章
|
1月前
|
数据可视化 数据挖掘 数据处理
进阶 pandas DataFrame:挖掘高级数据处理技巧
【5月更文挑战第19天】本文介绍了Pandas DataFrame的高级使用技巧,包括数据重塑(如`pivot`和`melt`)、字符串处理(如提取和替换)、日期时间处理(如解析和时间序列操作)、合并与连接(如`merge`和`concat`),以及使用`apply()`应用自定义函数。这些技巧能提升数据处理效率,适用于复杂数据分析任务。推荐进一步学习和探索Pandas的高级功能。
|
3天前
|
机器学习/深度学习 人工智能 资源调度
机器学习之numpy基础——线性代数,不要太简单哦
机器学习之numpy基础——线性代数,不要太简单哦
30 6
|
3天前
|
机器学习/深度学习 数据挖掘 Python
机器学习之pandas基础——pandas与概率论的简短碰面
机器学习之pandas基础——pandas与概率论的简短碰面
14 4
|
1月前
|
数据挖掘 数据处理 Python
【Python DataFrame 专栏】深入探索 pandas DataFrame:高级数据处理技巧
【5月更文挑战第19天】在 Python 数据分析中,pandas DataFrame 是核心工具。本文介绍了几个高级技巧:1) 横向合并 DataFrame;2) 数据分组与聚合;3) 处理缺失值;4) 数据重塑;5) 条件筛选;6) 使用函数处理数据。掌握这些技巧能提升数据处理效率和分析深度,助你更好地发掘数据价值。
【Python DataFrame 专栏】深入探索 pandas DataFrame:高级数据处理技巧
|
19天前
|
数据挖掘 数据处理 C语言
18. Python 数据处理之 Numpy
18. Python 数据处理之 Numpy
16 2
|
19天前
|
存储 数据挖掘 数据处理
19. Python 数据处理之 Pandas
19. Python 数据处理之 Pandas
26 1
|
19天前
|
数据采集 安全 数据处理
Python采集数据处理:利用Pandas进行组排序和筛选
使用Python的Pandas库,结合亿牛云代理和多线程技术,提升网络爬虫数据处理效率。通过代理IP避免封锁,多线程并发采集,示例代码展示数据分组、排序、筛选及代理IP配置和线程管理。
Python采集数据处理:利用Pandas进行组排序和筛选
|
24天前
|
机器学习/深度学习 人工智能 算法
构建未来的智能:量子机器学习在数据处理中的突破
【5月更文挑战第30天】 随着人工智能的不断进步,量子机器学习作为一种新兴技术范式,正在推动数据处理领域的革新。本文将深入探讨量子计算与机器学习相结合的可能性、挑战以及未来前景。通过分析量子算法对大数据集处理能力的增强,以及量子机器学习在模式识别、优化问题和加密技术中的应用,揭示了量子技术如何为传统机器学习领域带来翻天覆地的变化。文章还将讨论目前面临的技术障碍和潜在的解决方案,为读者描绘一个即将到来的智能化未来图景。
|
26天前
|
数据采集 数据可视化 数据处理
Python中的高效数据处理:Pandas库详解
Python中的高效数据处理:Pandas库详解
41 2
|
1月前
|
数据采集 数据可视化 数据处理
利用Python和Pandas库实现高效的数据处理与分析
在大数据和人工智能时代,数据处理与分析已成为不可或缺的一环。Python作为一门强大的编程语言,结合Pandas库,为数据科学家和开发者提供了高效、灵活的数据处理工具。本文将介绍Pandas库的基本功能、优势,并通过实际案例展示如何使用Pandas进行数据清洗、转换、聚合等操作,以及如何利用Pandas进行数据可视化,旨在帮助读者深入理解并掌握Pandas在数据处理与分析中的应用。