【MySQL系列】-回表、覆盖索引真的懂吗

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 【MySQL系列】-回表、覆盖索引真的懂吗

在面试时常会被问一些概念性的东西。这些内容其实在开发中比较少用,但是为了显示你的知识储备你必须学习。博主最近在考Mysql认证时,也常碰到这样的问题。整理MySQL概念输出这篇博文。

一、MYSQL索引结构

1.1 索引的概念

MYSQL官方对索引的定义为:索引(Index)是帮助MySQL提高获取数据的数据结构。索引的本质是数据结构。可以简单理解为"预先排好一组能快速查询的数据结构"。这些数据结构以某种方式指向数据,可以通过这些数据结构实现高级查询算法。

1.2 索引的特点

  1. 索引一个排序的数据结构可以加速数据库的检索速度。
  2. 索引降低了数据库Insert、Update、Delete等维护任务的难度
  3. MySQL索引只能创建在表上,不能创建在视图上。
  4. 查询处理器执行SQL语句,一个表上,一次只能使用一个索引

1.3 索引的优点

  1. 提高数据检索的效率,降低数据库的IO成本
  2. 创建唯一性的索引,保证数据库表中每一行数据的唯一性。
  3. 加速表和表之间的连接。
  4. 在使用分组和排序子句进行数据检索时,可以显著减少查询中分组和排序的时间。

1.4 索引的缺点

  1. 创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加
  2. 索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大
  3. 当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,降低了数据的维护速度

二、B-Tree与B+Tree

2.1 B-Tree

B-Tree及为B树。B树是一种自平衡的树,能够保持数据有序。这种数据结构能够让查询数据,顺序访问、插入数据及删除的动作,都在对数时间内完成。B数概况来说是一个一般化的二叉查找树,可以拥有多于2个子节点。与自平衡二叉查找树不同,B树为系统大块数据的读写操作做了优化。B树减少定位记录时所经历的中间过程,从而加快存取速度。B树这种数据结构可以用来描述外部存储。

2.2 B+Tree

B+Tree是B-Tree的一种优化。节点上只存储键值,不存储数据。这样的设计在有限的节点空间(页空间)内可以存放更多的键值、指针。所有数据都存放在叶子节点中,所有叶子节点之间有链指针(双向循环列表),便于范围查询,也便于排序。

2.3 B-Tree 与B+Tree树的区别

  1. B-Tree 中,所有节点都会带有指向具体记录的指针;B+Tree 中只有叶子结点会带有指向具体记录的指针。
  2. B-Tree 中不同的叶子之间没有连在一起;B+Tree 中所有的叶子结点通过指针连接在一起。
  3. B-Tree 中可能在非叶子结点就拿到了指向具体记录的指针,搜索效率不稳定;B+Tree 中,一定要到叶子结点中才可以获取到具体记录的指针,搜索效率稳定。

B+Tree 中,由于非叶子结点不带有指向具体记录的指针,所以非叶子结点中可以存储更多的索引项,这样就可以有效降低树的高度,进而提高搜索的效率。

B+Tree 中,叶子结点通过指针连接在一起,这样如果有范围扫描的需求,那么实现起来将非常容易,而对于 B-Tree,范围扫描则需要不停的在叶子结点和非叶子结点之间移动。

2.4 那么为什么InnoDB的主键最好要搞成有序的?

InnoDB中主键索引是聚集索引,所有数据都存在主键索引所在的聚集索引的B+Tree结构的叶子节点中。如果每次插入的主键是大小随机的话,每次数据进来找到的叶子节点的位置是随机的,这样的话,有些叶子节点所在页本来就排满了,结果又来了一条数据,就势必要引起页分裂,所以导致性能下降;但是如果主键是有序的话,每次进行都找到当前叶子前面的位置,一个一个叶子按顺序排满一个页再排一个页,就不会又页分裂的问题了。所以自增主键对于InnoDB这种使用B+Tree索引的存储引擎来说,性能更好。

三、回表查询

回表查询就是在数据查询过程中MySQL内部需要两次查询。既先定位查询数据所在表的主键值,在根据主键定位行记录。

要弄清楚回表查询,我们就要先从InnoDB的索引实现说起,InnoDB索引分为两大类:聚集索引(Clustered Index)和普通索引(Secondary Index)

3.1 InnoDB 聚集索引

聚集索引是索引结构和数据一起存放的索引。主键索引为聚集索引。

InnoDB聚集索引的叶子节点存储行记录,因此InnoDB 必须要有且只有一个聚集索引。

  1. 如果表定义了 PK (Primary Key,主键),那么 PK 就是聚集索引;
  2. 如果表没有定义 PK,则第一个 NOT NULL UNIQUE 的列就是聚集索引。
  3. 否则 InnoDB 会另外创建一个隐藏的 ROWID 作为聚集索引。

由于这种机制是直接定位行记录,因此使得基于 PK 的查询速度非常快。

3.2 InnoDB非聚集索引

非聚集索引是索引结构和数据分开存在的索引。辅助索引就是非聚集索引。

非聚集索引的叶子节点不一定存储的是数据的指针(辅助索引的叶子节点存储的是就是主键,然后根据主键在回表查询数据。)

3.3 InnoDB回表

回表查询,就是先通过非聚集索引查询到对应的主键,在通过主键索引查询到对应的值。两次经过B+Tree索引。

四、覆盖索引

如果执行一个查询语句不经过两次B+Tree查询直接得到要查询的值,这个时候就不需要回表,也就是说在这个查询中,索引"覆盖了"查询,这个称为覆盖索引。

由于覆盖索引减少B+Tree是搜索次数,提高查询性能,所以使用覆盖索引是一个常用的索引手段。使用覆盖索引最常见的方法是创建联合索引,将需要查询的字段都放在联合索引上。

用explain sql,如果Extra中有using index,则证明使用到了覆盖索引。

五、最左前缀原则

最左前缀就是利用索引来加速检索,最左前缀可以是联合索引的最左N个字段,也可以是字符串索引的最左M个字符,就是说你要查询N个字段就包含在某个联合索引的最左N个字段内,简单说,也就是索引字段的数据必须是有序的,才能实现这种类型的查找,才能利用到索引。

最左前缀原则总结

  1. 假设有三个字段(col1, col2, col3),MySQL可以支持(col1), (col1, col2), 和(col1, col2, col3)的联合索引。
  2. 比较有争议的(col1, col3) 是否支持联合索引,官方给的文档中是支持的,我们试验也是支持。
  3. where子句几个搜索条件顺序调换不影响查询结果,因为Mysql中有查询优化器,会自动优化查询顺序。
  4. where子句,若遇到范围查询(> < between, like)或未在总结1中创建的索引对时,就会停止匹配(遇到的范围查询还是参与索引)。

六、索引失效

建好索引后,但是一些不好的SQL会导致索引失效,有一下几种场景会导致失效。

  1. 查询条件中有OR,即使有部分条件带索引也会失效;
  2. LIKE查询时已%开头;
  3. 如果列类型是字符串,那在查询条件中需要将数据用引号引用起来,否则不走索引;
  4. 索引列上参与计算会导致索引失效;
  5. 违背最左匹配原则;
  6. 如果Mysql估计全表扫描要比使用索引要快,会不适用索引
  7. B-tree索引 is null不会走,is not null会走,位图索引 is null,is not null 都会走;
  8. 联合索引 is not null 只要在建立的索引列(不分先后)都会走, in null时 必须要和建立索引第一列一起使用,当建立索引第一位置条件是is null 时,其他建立索引的列可以是is null(但必须在所有列 都满足is null的时候),或者=一个值; 当建立索引的第一位置是=一个值时,其他索引列可以是任何情况(包括is null =一个值),以上两种情况索引都会走。其他情况不会走

七、索引下推

索引下推(index condition pushdown )简称ICP,在Mysql5.6以后的版本上推出,用于优化回表查询;在不使用ICP的情况下,在使用非主键索引(又叫普通索引或者二级索引)进行查询时,存储引擎通过索引检索到数据,然后返回给MySQL服务器,服务器然后判断数据是否符合条件 ;在使用ICP的情况下,如果存在某些被索引的列的判断条件时,MySQL服务器将这一部分判断条件传递给存储引擎,

然后由存储引擎通过判断索引是否符合MySQL服务器传递的条件,只有当索引符合条件时才会将数据检索出来返回给MySQL服务器 ;

  • 查看索引下推的状态
show VARIABLES like '%optimizer_switch%';
-------------------------------------------------------
optimizer_switch  index_merge=on,index_merge_union=on,index_merge_sort_union=on,index_merge_intersection=on,engine_condition_pushdown=on,index_condition_pushdown=on,mrr=on,mrr_cost_based=on,block_nested_loop=on,batched_key_access=off,materialization=on,semijoin=on,loosescan=on,firstmatch=on,duplicateweedout=on,subquery_materialization_cost_based=on,use_index_extensions=on,condition_fanout_filter=on,derived_merge=on,use_invisible_indexes=off,skip_scan=on,hash_join=on,subquery_to_derived=off,prefer_ordering_index=on,hypergraph_optimizer=off,derived_condition_pushdown=on
  • 关闭索引下推
#索引下推是mysql 5.6优化查询回表的功能,在5.6之前都不支持索引下推
set optimizer_switch='index_condition_pushdown=off';
  • 开启索引下推
set optimizer_switch='index_condition_pushdown=on';
  • 总结
  1. 索引下推功能是mysql 5.6推出优化回表的操作,只支持向上兼容,低版本是不支持的;
  2. 索引下推优化的只是回表次数,扫描行数还是一样的。
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
1月前
|
缓存 关系型数据库 MySQL
MySQL索引策略与查询性能调优实战
在实际应用中,需要根据具体的业务需求和查询模式,综合运用索引策略和查询性能调优方法,不断地测试和优化,以提高MySQL数据库的查询性能。
164 66
|
6天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
55 9
|
10天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
51 18
|
3天前
|
存储 Oracle 关系型数据库
索引在手,查询无忧:MySQL索引简介
MySQL 是一款广泛使用的关系型数据库管理系统,在2024年5月的DB-Engines排名中得分1084,仅次于Oracle。本文介绍MySQL索引的工作原理和类型,包括B+Tree、Hash、Full-text索引,以及主键、唯一、普通索引等,帮助开发者优化查询性能。索引类似于图书馆的分类系统,能快速定位数据行,极大提高检索效率。
27 8
|
9天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
17 7
|
8天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化与慢查询优化:原理与实践
通过本文的介绍,希望您能够深入理解MySQL索引优化与慢查询优化的原理和实践方法,并在实际项目中灵活运用这些技术,提升数据库的整体性能。
32 5
|
12天前
|
存储 关系型数据库 MySQL
Mysql索引:深入理解InnoDb聚集索引与MyisAm非聚集索引
通过本文的介绍,希望您能深入理解InnoDB聚集索引与MyISAM非聚集索引的概念、结构和应用场景,从而在实际工作中灵活运用这些知识,优化数据库性能。
66 7
|
28天前
|
关系型数据库 MySQL Java
MySQL索引优化与Java应用实践
【11月更文挑战第25天】在大数据量和高并发的业务场景下,MySQL数据库的索引优化是提升查询性能的关键。本文将深入探讨MySQL索引的多种类型、优化策略及其在Java应用中的实践,通过历史背景、业务场景、底层原理的介绍,并结合Java示例代码,帮助Java架构师更好地理解并应用这些技术。
27 2
|
1月前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
256 1
|
1月前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
109 0