Plant(快速幂+数学分析(没想到吧,数学无处不在))

简介: Plant(快速幂+数学分析(没想到吧,数学无处不在))

Dwarfs have planted a very interesting plant, which is a triangle directed "upwards". This plant has an amusing feature. After one year a triangle plant directed "upwards" divides into four triangle plants: three of them will point "upwards" and one will point "downwards". After another year, each triangle plant divides into four triangle plants: three of them will be directed in the same direction as the parent plant, and one of them will be directed in the opposite direction. Then each year the process repeats. The figure below illustrates this process.

9e26f70ffa47e84a21896cccce77c49e.png


Help the dwarfs find out how many triangle plants that point "upwards" will be in n years.


Input


The first line contains a single integer n (0 ≤ n ≤ 1018) — the number of full years when the plant grew.


Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier.


Output


Print a single integer — the remainder of dividing the number of plants that will point "upwards" in n years by 1000000007 (109 + 7).


Examples


Input


1

Output


3

Input


2

Output


10

Note


The first test sample corresponds to the second triangle on the figure in the statement. The second test sample corresponds to the third one.


题意分析得到公式2^n(2^n+1)/2第n年的向下的个数,这个要自己推了,然后用快速幂通过n得到2^n。对了,提醒一下会爆int,用long long来存。



听懂了记得给个赞鼓励一下,码字不易,用爱发电。


上ac代码。

f58230e9f063709cf3167704f4efdf14.gif


有事你就q我;QQ2917366383


学习算法

#include<iostream>
const int mod=1e9+7;
#define  ll long long
using namespace std;
ll gg(ll a,ll b,ll c)
{
  int ans=1;
  while(b)
  {
    if(b&1)
    {
      ans=ans*a%c;
    }
    a=a*a%c;
    b>>=1;
  }
  return ans;
}
int main()
{
  ll t;
  cin>>t;
ll x=gg(2,t,mod);
cout<<x*(x+1)/2%mod<<endl; 
} 




相关文章
|
1月前
|
Python
【10月更文挑战第11天】「Mac上学Python 21」小学奥数篇7 - 二元一次方程组求解
本篇将通过 Python 和 Cangjie 双语讲解如何求解二元一次方程组。通过这道题,学生将学会如何使用代数方法和编程逻辑求解方程组中的未知数。
72 1
|
6月前
|
算法 Python
Python技术分享:使用穷举法解决鸡兔同笼问题
Python技术分享:使用穷举法解决鸡兔同笼问题
270 1
|
算法 Java C++
【洛谷算法题】P2433-小学数学 N 合一【入门2分支结构】
【洛谷算法题】P2433-小学数学 N 合一【入门2分支结构】
十个漂亮的数学定理赏析(1)
十个漂亮的数学定理赏析(1)
65 0
十个漂亮的数学定理赏析(2)
十个漂亮的数学定理赏析(2)
152 0
|
算法 开发者
算法笔试模拟题精解之“正三角塔”
这是一个数学问题,将三角塔多写出几层后就可以发现规律。
算法笔试模拟题精解之“正三角塔”
|
数据安全/隐私保护
高等代数思维训练-从一道例题看高等代数的常用方法[河北师范大学麻常利教授]
链接: http://pan.baidu.com/s/1bn4jOlD 密码: w6kg   这是pdf文件,网上随便就可以找到阅读器,比如 foxit reader 等绿色软件.
1028 0
|
关系型数据库 RDS
[再寄小读者之数学篇](2015-06-08 一个有意思的定积分计算)
$$\beex \bea \int_0^\frac{\pi}{4}\ln (1+\tan x)\rd x &=\int_0^\frac{\pi}{4} \ln \frac{\cos x+\sin x}{\cos x}\rd x\\ &=\int_0^\frac{\pi}{4} \ln \sez{\s...
714 0
|
关系型数据库 RDS
[再寄小读者之数学篇](2014-10-09 家里蹲大学数学杂志第310期第7题第1小题修正)
当 $x>0$ 时, 由 $$\beex \bea \int_0^\infty e^{-x\sex{t+\frac{1}{t}}}\rd t &\leq \int_0^1 e^{-\frac{x}{t}}\rd t +\int_1^\infty e^{-xt}\rd t\\ &=\int_1^\in...
689 0