Numbers 1,2,3,…𝑛 (each integer from 1 to 𝑛 once) are written on a board. In one operation you can erase any two numbers 𝑎 and 𝑏 from the board and write one integer 𝑎+𝑏2 rounded up instead.
You should perform the given operation 𝑛−1 times and make the resulting number that will be left on the board as small as possible.
For example, if 𝑛=4, the following course of action is optimal:
choose 𝑎=4 and 𝑏=2, so the new number is 3, and the whiteboard contains [1,3,3];
choose 𝑎=3 and 𝑏=3, so the new number is 3, and the whiteboard contains [1,3];
choose 𝑎=1 and 𝑏=3, so the new number is 2, and the whiteboard contains [2].
It’s easy to see that after 𝑛−1 operations, there will be left only one number. Your goal is to minimize it.
Input
The first line contains one integer 𝑡 (1≤𝑡≤1000) — the number of test cases.
The only line of each test case contains one integer 𝑛 (2≤𝑛≤2⋅105) — the number of integers written on the board initially.
It’s guaranteed that the total sum of 𝑛 over test cases doesn’t exceed 2⋅105.
Output
For each test case, in the first line, print the minimum possible number left on the board after 𝑛−1 operations. Each of the next 𝑛−1 lines should contain two integers — numbers 𝑎 and 𝑏 chosen and erased in each operation.
Example
inputCopy
1
4
outputCopy
2
2 4
3 3
3 1
题意翻译
T次询问,对于每一次询问:
给定 n 个数,为 1,2,3,...,n每次可以选择两个数 a,b 并删除,然后把[(a+b)/2⌉ 加入到这些数中。最小化最后剩下的一个数,输出这个数并且输出构造方案。
额,还是一个水题简单模拟就行;
从后往前依次合并,可以保证最大数每次减少1或者不变,最优结果为2,注意从第2位开始。
额,一到水题,写了2份ac代码,可选择看;
有事你就q我;QQ2917366383
学习算法
#include <iostream> #include <cstring> #include <ctime> #include <algorithm> using namespace std; int t,n; void solve(){ printf("2\n"); int _t; _t = n; if(n == 2){ printf("1 2\n"); return; }//打印2段是为了让你们看得清楚一点。 printf("%d %d\n",n-2,n); printf("%d %d\n",n-1,n-1); for(int i = n-3;i >= 1;--i){ printf("%d %d\n",i,i + 2); } } int main(){ scanf("%d",&t); while(t--){ scanf("%d",&n); solve(); } return 0;//听懂掌声 }
#include<bits/stdc++.h> using namespace std; int n,t; void pk() { cout<<"2"<<endl; if(n==2) { cout<<"1"<<' '<<"2"<<endl; return; } cout<<n-2<<' '<<n<<endl; cout<<n-1<<' '<<n-1<<endl; for(int i=n-3;i>=1;i--) cout<<i<<' '<<i+2<<endl; } int main() { cin>>t; while(t--) { cin>>n; pk(); } return 0; }