数学知识:中国剩余定理

简介: 复习acwing算法基础课的内容,本篇为讲解数学知识:中国剩余定理,关于时间复杂度:目前博主不太会计算,先鸽了,日后一定补上。

文章目录

前言

一、中国剩余定理

二、AcWing 204. 表达整数的奇怪方式

本题解析

AC代码

三、时间复杂度


前言

复习acwing算法基础课的内容,本篇为讲解数学知识:中国剩余定理,关于时间复杂度:目前博主不太会计算,先鸽了,日后一定补上。


一、中国剩余定理

即孙子定理,具体定理即推导见:孙子定理,注意中国剩余定理必须要求两两互质,本博客例题中没有限制两两互质,故不能直接套用中国剩余定理的公式,需要在基础之上进行变形


二、AcWing 204. 表达整数的奇怪方式

本题链接:AcWing 204. 表达整数的奇怪方式

本博客提供本题截图:

image.png

本题解析

理论推导见OI爷的博客:墨染空 ,

AC代码

#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
LL exgcd(LL a, LL b, LL &x, LL &y)
{
    if (!b)
    {
        x = 1, y = 0;
        return a;
    }
    LL d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}
int main()
{
    int n;
    cin >> n;
    LL x = 0, m1, a1;
    cin >> m1 >> a1;
    for (int i = 0; i < n - 1; i ++ )
    {
        LL m2, a2;
        cin >> m2 >> a2;
        LL k1, k2;
        LL d = exgcd(m1, -m2, k1, k2);
        if ((a2 - a1) % d)
        {
            x = -1;
            break;
        }
        k1 *= (a2 - a1) / d;
        k1 = (k1 % (m2/d) + m2/d) % (m2/d);
        x = k1 * m1 + a1;
        LL m = abs(m1 / d * m2);
        a1 = k1 * m1 + a1;
        m1 = m;
    }
    if (x != -1) x = (x % m1 + m1) % m1;
    cout << x << endl;
    return 0;
}

三、时间复杂度

关于中国剩余定理各步操作的时间复杂度以及证明,后续会给出详细的说明以及证明过程,目前先鸽了。



目录
相关文章
|
6月前
|
算法 安全 Java
非启发式算法——中国剩余定理
非启发式算法——中国剩余定理
119 0
|
人工智能 算法
算法提高:组合数学| 容斥原理常见应用
容斥原理常见的问题如下。 (1) 篮球、羽毛球、网球三种运动,至少会一种的有22人,会篮球的有15人,会羽毛球的有17人,会网球的有12人,既会篮球又会羽毛球的有11人,既会羽毛球又会网球的有7人,既会篮球又会网球的有9人,那么三种运动都会的有多少人? (2) 《西游记》《三国演义》《红楼梦》三大名著,至少读过其中一本的有20人,读过《西游记》的有10人,读过《三国演义》的有12人,读过《红楼梦》的有15人,读过《西游记》《三国演义》的有8人,读过《三国演义》《红楼梦》的有9人,读过《西游记》《红楼梦》的有7人。问三本书全都读过的有多少人?
152 0
算法提高:组合数学| 容斥原理常见应用
|
机器学习/深度学习 算法
算法提高:组合数学| 卡特兰数的实现
卡特兰数列是组合数学中在各种计数问题中常出现的数列,其前几项为1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012…… 卡特兰数首先是由欧拉在计算对凸n边形的不同的对角三角形剖分的个数问题时得到的,即在一个凸n边形中,通过不相交于n边形内部的对角线,把n边形拆分成若干三角形,不同的拆分数用Hn表示,Hn即卡特兰数。
145 0
算法提高:组合数学| 卡特兰数的实现
数学知识-约数
数学知识-约数
|
算法
数学知识:扩展欧几里得算法
复习acwing算法基础课的内容,本篇为讲解数学知识:扩展欧几里得算法,关于时间复杂度:目前博主不太会计算,先鸽了,日后一定补上。
171 1
数学知识:扩展欧几里得算法
|
算法
基础算法练习200题11、鸡兔同笼
基础算法练习200题11、鸡兔同笼
141 0
基础算法练习200题11、鸡兔同笼
|
存储 算法 图计算
数学知识:容斥原理
复习acwing算法基础课的内容,本篇为讲解数学知识:容斥原理,关于时间复杂度:目前博主不太会计算,先鸽了,日后一定补上。
134 0
数学知识:容斥原理
数学知识:高斯消元(二)
AcWing 884. 高斯消元解异或线性方程组
115 0
数学知识:高斯消元(二)
|
存储 算法
数学知识:高斯消元(一)
复习acwing算法基础课的内容,本篇为讲解数学知识:高斯消元,关于时间复杂度:目前博主不太会计算,先鸽了,日后一定补上。
163 0
数学知识:高斯消元(一)