重磅| Falcon 180B 正式在 Hugging Face Hub 上发布!

简介: 如上所述,为跟踪对话而微调的模型版本使用了非常直接的训练模板。我们必须遵循同样的模式才能运行聊天式推理。作为参考,你可以看看聊天演示中的 format_prompt 函数:

引言
我们很高兴地宣布由 Technology Innovation Institute (TII) 训练的开源大模型 Falcon 180B 登陆 Hugging Face! Falcon 180B 为开源大模型树立了全新的标杆。作为当前最大的开源大模型,有 180B 参数并且是在在 3.5 万亿 token 的 TII RefinedWeb 数据集上进行训练,这也是目前开源模型里最长的单波段预训练。

你可以在 Hugging Face Hub 中查阅模型以及其 Space 应用。

模型:

https://hf.co/tiiuae/falcon-180B

https://hf.co/tiiuae/falcon-180B-chat

Space 应用地址:

https://hf.co/spaces/tiiuae/falcon-180b-demo

从表现能力上来看,Falcon 180B 在自然语言任务上的表现十分优秀。它在开源模型排行榜 (预训练) 上名列前茅,并可与 PaLM-2 等专有模型相差无几。虽然目前还很难给出明确的排名,但它被认为与 PaLM-2 Large 不相上下,这也使得它成为目前公开的能力最强的 LLM 之一。

我们将在本篇博客中通过评测结果来探讨 Falcon 180B 的优势所在,并展示如何使用该模型。

Falcon 180B 是什么?
从架构维度来看,Falcon 180B 是 Falcon 40B 的升级版本,并在其基础上进行了创新,比如利用 Multi-Query Attention 等来提高模型的可扩展性。可以通过回顾 Falcon 40B 的博客 Falcon 40B 来了解其架构。Falcon 180B 是使用 Amazon SageMaker 在多达 4096 个 GPU 上同时对 3.5 万亿个 token 进行训练,总共花费了约 7,000,000 个 GPU 计算时,这意味着 Falcon 180B 的规模是 Llama 2 的 2.5 倍,而训练所需的计算量是 Llama 2 的 4 倍。

其训练数据主要来自 RefinedWeb 数据集 (大约占 85%),此外,它还在对话、技术论文和一小部分代码 (约占 3%) 等经过整理的混合数据的基础上进行了训练。这个预训练数据集足够大,即使是 3.5 万亿个标记也只占不到一个时期 (epoch)。

已发布的 聊天模型 在对话和指令数据集上进行了微调,混合了 Open-Platypus、UltraChat 和 Airoboros 数据集。

‼️ 商业用途: Falcon 180b 可用于商业用途,但条件非常严格,不包括任何 “托管用途”。如果您有兴趣将其用于商业用途,我们建议您查看 许可证 并咨询您的法律团队。

Falcon 180B 的优势是什么?
Falcon 180B 是当前最好的开源大模型。在 MMLU 上 的表现超过了 Llama 2 70B 和 OpenAI 的 GPT-3.5。在 HellaSwag、LAMBADA、WebQuestions、Winogrande、PIQA、ARC、BoolQ、CB、COPA、RTE、WiC、WSC 及 ReCoRD 上与谷歌的 PaLM 2-Large 不相上下。

它在 Hugging Face 开源大模型榜单上以 68.74 的成绩被认为是当前评分最高的开放式大模型,评分超过了 Meta 的 LlaMA 2 (67.35)。

Model Size Leaderboard score Commercial use or license Pretraining length
Falcon 180B 68.74 🟠 3,500B
Llama 2 70B 67.35 🟠 2,000B
LLaMA 65B 64.23 🔴 1,400B
Falcon 40B 61.48 🟢 1,000B
MPT 30B 56.15 🟢 1,000B

如何使用 Falcon 180B?
从 Transfomers 4.33 开始,Falcon 180B 可以在 Hugging Face 生态中使用和下载。

Demo
你可以在 这个 Hugging Face Space 或以下场景中体验 Falcon 180B 的 demo。

硬件要求
类型 种类 最低要求 配置示例
Falcon 180B Training Full fine-tuning 5120GB 8x 8x A100 80GB
Falcon 180B Training LoRA with ZeRO-3 1280GB 2x 8x A100 80GB
Falcon 180B Training QLoRA 160GB 2x A100 80GB
Falcon 180B Inference BF16/FP16 640GB 8x A100 80GB
Falcon 180B Inference GPTQ/int4 320GB 8x A100 40GB
Prompt 格式
其基础模型没有 Prompt 格式,因为它并不是一个对话型大模型也不是通过指令进行的训练,所以它并不会以对话形式回应。预训练模型是微调的绝佳平台,但或许你不该直接使用。其对话模型则设有一个简单的对话模式。

System: Add an optional system prompt here
User: This is the user input
Falcon: This is what the model generates
User: This might be a second turn input
Falcon: and so on
Transformers
随着 Transfomers 4.33 发布,你可以在 Hugging Face 上使用 Falcon 180B 并且借助 HF 生态里的所有工具,比如:训练和推理脚本及示例 安全文件格式 (safetensor) 与 bitsandbytes (4 位量化)、PEFT (参数高效微调) 和 GPTQ 等工具集成 辅助生成 (也称为 “推测解码”) RoPE 扩展支持更大的上下文长度 丰富而强大的生成参数 在使用这个模型之前,你需要接受它的许可证和使用条款。请确保你已经登录了自己的 Hugging Face 账号,并安装了最新版本的 transformers:

pip install --upgrade transformers
huggingface-cli login
bfloat16

以下是如何在 bfloat16 中使用基础模型的方法。Falcon 180B 是一个大型模型,所以请注意它的硬件要求。

from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model_id = "tiiuae/falcon-180B"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)

prompt = "My name is Pedro, I live in"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")

output = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
do_sample=True,
temperature=0.6,
top_p=0.9,
max_new_tokens=50,
)
output = output[0].to("cpu")
print(tokenizer.decode(output)
这可能会产生如下输出结果:

My name is Pedro, I live in Portugal and I am 25 years old. I am a graphic designer, but I am also passionate about photography and video.
I love to travel and I am always looking for new adventures. I love to meet new people and explore new places.
使用 8 位和 4 位的 bitsandbytes

Falcon 180B 的 8 位和 4 位量化版本在评估方面与 bfloat16 几乎没有差别!这对推理来说是个好消息,因为你可以放心地使用量化版本来降低硬件要求。请记住,在 8 位版本进行推理要比 4 位版本快得多。 要使用量化,你需要安装 “bitsandbytes” 库,并在加载模型时启用相应的标志:

model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
load_in_8bit=True,
device_map="auto",
)
对话模型

如上所述,为跟踪对话而微调的模型版本使用了非常直接的训练模板。我们必须遵循同样的模式才能运行聊天式推理。作为参考,你可以看看聊天演示中的 format_prompt 函数:

def format_prompt(message, history, system_prompt):
prompt = ""
if system_prompt:
prompt += f"System: {system_prompt}\n"
for user_prompt, bot_response in history:
prompt += f"User: {user_prompt}\n"
prompt += f"Falcon: {bot_response}\n"
prompt += f"User: {message}\nFalcon:"
return prompt
如你所见,用户的交互和模型的回应前面都有 User: 和 Falcon: 分隔符。我们将它们连接在一起,形成一个包含整个对话历史的提示。我们可以提供一个系统提示来调整生成风格。

其他资源

相关文章
|
测试技术 C++ 异构计算
Falcon 180B 目前最强大的开源模型
Technology Innovation Institute最近发布了Falcon 180B大型语言模型(LLM),它击败了Llama-2 70b,与谷歌Bard的基础模型PaLM-2 Large不相上下。
166 0
|
测试技术
彻底反转:号称「碾压」LLaMA的Falcon实测得分仅49.08,HuggingFace决定重写排行榜代码
彻底反转:号称「碾压」LLaMA的Falcon实测得分仅49.08,HuggingFace决定重写排行榜代码
195 0
彻底反转:号称「碾压」LLaMA的Falcon实测得分仅49.08,HuggingFace决定重写排行榜代码
|
人工智能 Apache
Falcon碾压LLaMa?Huggingface排行引争议,有人自发测评,结论却相反
Falcon碾压LLaMa?Huggingface排行引争议,有人自发测评,结论却相反
239 0
|
监控 数据库
open-falcon 安装以及配置
环境准备 请参考环境准备 同时,请再次检查当前的工作目录设置: export HOME=/home/work export WORKSPACE=$HOME/open-falcon mkdir -p $WORKSPACE 安装Transfer transfer默认监听在:8433端口上,agent会通过jsonrpc的方式来push数据上来。
2334 0
|
存储 监控 关系型数据库
|
7月前
|
人工智能 JSON 搜索推荐
社区供稿 | GLM-4适配ModelScope-Agent最佳实践
GLM-4是由智谱 AI 发布的新一代基座大模型。
|
27天前
|
机器学习/深度学习 人工智能 监控
AutoTrain:Hugging Face 开源的无代码模型训练平台
AutoTrain 是 Hugging Face 推出的开源无代码模型训练平台,旨在简化最先进模型的训练过程。用户无需编写代码,只需上传数据即可创建、微调和部署自己的 AI 模型。AutoTrain 支持多种机器学习任务,并提供自动化最佳实践,包括超参数调整、模型验证和分布式训练。
111 4
AutoTrain:Hugging Face 开源的无代码模型训练平台
|
7天前
|
人工智能 API 开发工具
ModelScope魔搭12月版本发布月报
为了给开发者提供更便捷的开源模型API访问方式,我们正式启动了 ModelScope API-Inference 的公测。在开源工具链方面,我们进行了ModelScope 1.21.0的新版本发布,提供了llamafile的集成以及模型加载/下载链路的优化,SWIFT 3.0大版本也已经合并主干,在这个基础上新模型的支持会更加顺畅与便利。
ModelScope魔搭12月版本发布月报