数据结构:顺序表,链表,双向链表

简介: 数据结构:顺序表,链表,双向链表

顺序表,链表以及双向链表都属于线性表,线性顾名思义,就像一根绳子一样按照一定的顺序将数据连接起来,线性表是我们日常存储数据常用的结构,在不同的场景下有着不同的应用。事实上,线性表还包括栈和队列,不过篇幅原因,这篇文章将只详细讲述顺序表,单向链表,双向链表这三种线性表,主要有存储形式,实现步骤,及它们之间的区别。


顺序表

顺序表的存储形式

顺序表是在内存中按照顺序存放的数据形式,要求内存地址的连续,因此顺序表要靠数组来实现,但实现方法又分为静态实现和动态实现。静态实现是给定了数组的大小,数据的增删查改只能在这么大的空间里进行,多应用在明确给定了空间的大小对数据进行维护。而动态实现则可以根据需要扩大数据的容量,实现对数据的维护,静态的实现是比较容易的,设立指定大小的数据类型的数组即可,我们重点探讨动态实现。

顺序表的动态实现

实现数据容量的动态扩增,要了解动态内存开辟函数,在C语言中分别是malloc,calloc,realloc具体的功能大家自行查询,这里我们要用到realloc。要实现对已开辟空间的管理,以及当空间满了自动开辟更大的空间的功能,我们需要至少三个变量。第一个是数据类型的指针变量,设为DataType * p,用来维护已经开辟好的空间,第二个变量用来指明当前已存放了多少个数据,设为int size,第三个变量用来指明总共能存放多少个数据,将其设立为         int capacity,当size == capacity时,说明容量满了,需要扩大容量,然后利用realloc函数开辟一块更大的空间再把指针交给DataType * p来维护,为了方便传值使用,我们将这三个变量全部封装到一个结构体里。

代码实现

typedef  int  DateType;
typedef struct SeqList
{
  SLDateType * a; //用来维护已开辟的空间
  int size; //表中存放了多少个数据
  int capacity; //表中实际能存放的数据
}SL;
void SeqListInit(SL* ps)  //将封装后的结构体的值进行初始化
{
  ps->a = NULL;
  ps->size = 0;
  ps->capacity = 0;
} 
void SeqListAddCapacity(SL* ps)  //实现顺序表的容量的动态开辟
{
  if (ps->capacity == ps->size)
  {
    int newcapacity = ps->capacity == 0 ? 4 : 2 * ps->capacity;
    SLDateType* tmp = (SLDateType*)realloc(ps->a, newcapacity * sizeof(SLDateType));
    if (tmp == NULL)
    {
      printf("realloc fail\n");
      exit(-1);
    }
    ps->a = tmp;
    ps->capacity = newcapacity;
    tmp = NULL;
  }
}

顺序表的数据插入

顺序表数据的插入有三种形式,第一种是头插,也就是在数组首元素位置处插入数据,这就要求之前已存储的所有的数据都要向后移动一位,给新插入的数据腾个位置,第二种是尾插,在顺序表的末尾进行数据的插入,第三种是指定位置的插入,那就要求要插入的这个位置及其后面的元素都要向后移动一位,腾出一个位置。由此可见,头插数据是牵一发而动全身,这样插入数据的效率是很低的,想要插入一个数据还要遍历整个数组,而指定位置的插入也没有好到哪去,按照最坏的情况是和头插一样的,时间复杂度都是O(n),只有尾插的效率是最高的,时间复杂度为O(1)

三种插入方式的代码实现

//前插
void SeqLIstPushFront(SL* ps, SLDateType x)
{
  SeqListAddCapacity(ps);
  for (int i = ps->size; i >0; i--)
  {
    ps->a[i] = ps->a[i-1];
  }
  ps->a[0] = x;
  ps->size++;
}
//任意位置插入
void SeqListInsert(SL* ps, SLDateType x, SLDateType y)
{
  SeqListAddCapacity(ps);
  for (int i = ps->size; i >= x; i--)
  {
    ps->a[i] = ps->a[i - 1];
  }
  ps->a[x - 1] = y;
  ps->size++;
}
//尾插
void SeqListPushBack(SL* ps, SLDateType x)
{
  SeqListAddCapacity(ps);
  ps->a[ps->size] = x;
  ps->size++;
}

顺序表数据的删除

顺序表的删除可以通过直接覆盖要删除的元素来实现删除,同样也分为三种删除方式,前删,指定位置删,尾删。前删就是把首元素后面的元素都往前走一步,把首元素覆盖掉,然后size--,就完成了删除,指定位置的删除和前删比较类似,都是后面的元素把要删除的元素覆盖掉,尾删就是比较简单的,只需要将size--,就表示该元素已经删掉了

三种删除方式的代码实现

//前删
void SeqListPopFront(SL* ps)
{
  for (int i = 0; i < ps->size; i++)
  {
    ps->a[i] = ps->a[i + 1];
  }
  if (ps->size > 0)
  {
    ps->size--;
  }
}
//任意位置删除
void SeqListPop(SL* ps, SLDateType x)
{
  for (int i = x; i < ps->size; i++)
  {
    ps->a[i-1] = ps->a[i];
  }
  ps->size--;
}
//尾删
void SeqListPopBack(SL* ps)
{
  if (ps->size > 0)     //这里防止空表要删除会使size变为负数
  {
    ps->size--;
  }
}

顺序表的查改

顺序表的查看是比较简单的,通过size控制循环,对比要查看的元素是否存在

代码实现

void SeqListCheck(SL* ps, SLDateType x)
{
  for (int i = 0; i < ps->size; i++)
  {
    if (ps->a[i] == x)
    {
      putchar('\n');
      printf("got it, the subscript is %d", i);
      return 0;
    }
  }
  printf("not found\n");
}
//通过这个查看和修改都能实现

单向链表

单向链表的存储形式

单向链表可以解决顺序表存在的一些问题,我们分析一下刚才顺序表存在的一些问题

1.头部\任意位置插入删除数据时,时间复杂度是O(n)

2.增容需要申请新的空间, 拷贝数据,释放旧空间,会有不小的消耗

3.每次增容扩展地空间会造成很大地浪费

单向链表分为很多种,循环的,有指向头和尾的两个指针的等等,这里只叙述最为经典和基础的单向链表,基础的掌握,其他的看看就了解了

单链表的存储形式通常包含要存的数据类型DataType,指向下一个节点的指针变量Linck*next

struct ListNode
{
  DataStyle val;
  struct ListNode* next;
}Linck;

单向链表数据的插入

在使用单向链表时,我们需要一个指针变量始终指向链表的第一个节点,这个指针用来维护这串链表,通过解引用这个指针能找到链表的第一个节点,然后就能找到其他节点,数据的插入同样有三种形式,头插,指定位置插入,尾插。

尾插是最为简便的,只需要将链表最后节点指向下一个节点的指针指向新创建的节点,简单归简单但是想要找到最后一个节点的位置是不轻松的,链表的存储形式在内存地址上是不连续的,无法做到数组那样任意访问,可不是得从头节点开始,遍历一遍链表,这样时间复杂度就上来了。

头插较为麻烦,主要是因为头插一个新元素,就要挪动指向头节点的指针phead,而要改变指针变量phead的值,那就得靠传二级指针来实现,比如变量 int a; 想要在另一个函数里改变a的值,那就要传a的指针过去,同理,想要改变指针变量指向的地址,那就得用二级指针才能达到修改的目的,很多初学者可能会在这里犯迷糊,二级指针可能会有点绕,在以后的文章里,我将列举三个可以回避使用二级指针的方法

指定位置插入需要考虑的情况比较多,因为头插和尾插也可是指定位置,要同时兼顾这两种情况,在中间某个位置前插入,就需要记住该位置的前一个节点的next指针的值,其实是一个很简单的过程,但要叙述起来就比较难理解,简单来说就是为了保持链表的连贯,不能直接将前一个节点的next指针指向新节点就完事了,还要将新节点的next指针将后面的链表连贯起来

代码实现

//创建一个新节点的函数实现,后面创建直接调用
struct ListNode* Buynewnode(DataStyle Data)
{
  struct ListNode* newnode = (struct ListNode*)malloc(sizeof(struct ListNode));
  if (NULL == newnode)
  {
    printf("malloc fail\n");
    return NULL;
  }
  newnode->val = Data;
  newnode->next = NULL;
  return newnode;
}
//头插的实现,注意,这里传二级指针是为了改变phead的值
void Linckpushfront(struct ListNode** pphead, DataStyle Data)
{
       assert(pphead);
     struct ListNode* newnode = Buynewnode(Data);
      newnode->next = *pphead;
    *pphead = newnode;
}
//尾插的实现
void Linckpushback(struct ListNode** pphead, DataStyle Data)
{
  assert(pphead);
  struct ListNode* tmp = *pphead;
  if (*pphead == NULL)
  {
    tmp = Buynewnode(Data);
    *pphead = tmp;
  }
  else
  {
    while (tmp->next != NULL)
    {
      tmp = tmp->next;
    }
    tmp->next = Buynewnode(Data);
  }
}
//指定位置插入的实现
//pos是指定节点的指针
void LinckpushInsert(Linck** pphead, Linck * pos, DataStyle Data)
{
  assert(pphead);
  assert(*pphead);
  assert(pos);
  Linck* tmp = *pphead;
  while (tmp->next != pos)
  {
    tmp = tmp->next;
  }
  Linck* newnode = Buynewnode(Data);
  if ((*pphead)->next == NULL)
  {
    newnode->next = *pphead;
    *pphead = newnode;
  }
  else
  {
    tmp->next = newnode;
    newnode->next = pos;
  }
}

单向链表数据的删除

单向链表的数据删除同样也分为头删,尾删,指定位置删,道理大家都懂,不过多重复,接下来直接上代码

//头删
void Linckpopfront(Linck** pphead)
{
  if (*pphead == NULL)
  {
    assert(*pphead != NULL);
  }
  Linck* tmp = *pphead;
  *pphead = (*pphead)->next;
  free(tmp);
}
//尾删
void Linckpopback(Linck** pphead)
{
  assert(pphead);
  assert(*pphead != NULL);
  if ((*pphead)->next == NULL)
  {
    free(*pphead);
    *pphead = NULL;
     return;
  }
  Linck* tmp = *pphead;
  while (tmp->next->next != NULL)
  {
    tmp = tmp->next;
  }
  free(tmp->next);
  tmp->next = NULL;
}
//指定位置删
void LinckpopErase(Linck** pphead, Linck* pos)
{
  assert(pphead);
  assert(*pphead);
  Linck* tmp = *pphead;
  if (*pphead == pos)
  {
    Linckpopfront(pphead);
  }
  else
  {
    while (tmp->next != pos)
    {
      tmp = tmp->next;
      assert(pos);//检测pos是否传错了
    }
    tmp->next = pos->next;
    free(pos);
  }
}

双向链表

双向链表的存储形式

我们在引入单向链表时,很好的解决了顺序表的占用空间浪费,头插/指定位置插入数据效率低的问题,但这又带来了一个新的问题,单向链表在尾插数据时,要遍历一遍链表,时间复杂度是O(n),而带头双向循环链表的出现就更好的解决了顺序表的问题,且没造成其他问题。带头双向循环链表是链表结构中最复杂的,但易于理解和使用,带头指的是下图中的哨兵卫节点head,这个节点不存储数据,只作为引导头使用


为何说带头双向循环链表能很好的解决问题,拿单向链表尾插遍历来说,带头双向循环链表就不存在这种问题,头节点head不存放任何数据,但指向了尾节点的位置,也就是说想要尾插可直接通过head找到尾节点完成插入,不需要遍历了,效率就提高了,但因为每个节点存了前后两个节点的指针,消耗的空间更多,也就是拿空间换取时间

typedef int DLinckDataType;
typedef struct DLincked
{
  struct DLincked*  previous;  //指向前一个节点
  struct DLincked*  next;      //指向后一个节点
  DLinckDataType Data;         //存放数据
} DLinck;

上面代码是带头双向循环链表节点的定义

上图带头双向循环链表为空时,前后指针都分别指向自己


带头双向循环链表数据的插入和删除

带头双向循环链表的插入和删除,本质上和单向链表的思想是一样的,这里不过多赘述,直接上代码吧


//创建新节点
DLinck* Buynewnode(DLinckDataType Data)
{
  DLinck* newnode = (DLinck*)malloc(sizeof(DLinck));
  if (newnode == NULL)
  {
    assert(newnode);
    return -1;
  }
  newnode->previous = NULL;
  newnode->next = NULL;
  newnode->Data = Data;
  return newnode;
}
//尾插
void DLinckpushback(DLinck* phead, DLinckDataType Data)
{
  DLinck* newnode = Buynewnode(Data);
  newnode->previous = phead->previous;
  phead->previous->next = newnode;
  phead->previous = newnode;
  newnode->next = phead;
}
//首插
void DLinckpushfront(DLinck* phead, DLinckDataType Data)
{
  DLinck* newnode = Buynewnode(Data);
  newnode->next = phead->next;
  newnode->previous = phead;
  phead->next->previous = newnode;
  phead->next = newnode;
}
//指定位置插
void DLinckpush(DLinck* phead, DLinck* pos, DLinckDataType Data)
{
  assert(pos);
  DLinck* newnode = Buynewnode(Data);
  newnode->next = pos;
  newnode->previous = pos->previous;
  pos->previous->next = newnode;
  pos->previous = newnode;
}
//指定位置删
void DLinckpop(DLinck* phead, DLinck* pos)
{
  assert(phead->next != phead);
  assert(pos);
  DLinck* posprevious = pos->previous;
  DLinck* posnext = pos->next;
  posprevious->next = pos->next;
  posnext->previous = pos->previous;
  free(pos);
}
//头删
void DLinckpopfront(DLinck* phead)
{
  assert(phead->next != phead);
  DLinck* tmp = phead->next;
  phead->next = tmp->next;
  tmp->next->previous = phead;
  free(tmp);
}
//尾删
void DLinckpopback(DLinck* phead)
{
  assert(phead->next != phead );
  DLinck* tmp = phead->previous;
  phead->previous = tmp->previous;
  tmp->previous->next = phead;
  free(tmp);
}

顺序表与链表的区别

顺序表与链表的优缺点

顺序表的优点:

1.尾插尾删效率高

2.靠数组随机访问

3.cpu高速缓存命中率更高(相比于链表)

缺点:

头部和中间的插入效率低

空间浪费情况较为严重


链表的优点:

1.指定位置插入数据效率高

2.按需申请内存

3.能解决顺序表的一些问题

缺点:

不支持随机访问


何为cpu高速缓存命中率


接下来的内容要参考上面这张图

CPU处理速度与内存不是一个量级的,CPU执行指令,不会直接访问内存,而是先看数据在不在L1,L2,L3高速缓存里,如果在的话(即命中),那就直接访问,如果不在的话(即未命中),那就将内存中的数据加载到高速缓存里,然后再访问

为了提高访问效率,内存加载信息到高速缓存中时,并不是一个一个加载的,而是会多加载其周边的一些数据,加载多少取决于硬件,数组的数据存储是连续的,如果加载的数据是数组,那么会将数组周边的元素都加载进去,这样再访问数组里其他数据时,直接就能在高速缓存里找到,命中率很高。

而链表呢,每个节点在内存中的存放地址是随机的,基本不会是连续的,这就导致访问链表某个节点时,从内存加载到高速缓存,其多加载的周边数据并不会包含该链表的其他节点,再想访问链表其他元素时就要从内存中重新导入到高速缓存,命中率明显没有顺序表的高


目录
相关文章
|
2月前
|
存储 算法 Perl
数据结构实验之链表
本实验旨在掌握线性表中元素的前驱、后续概念及链表的建立、插入、删除等算法,并分析时间复杂度,理解链表特点。实验内容包括循环链表应用(约瑟夫回环问题)、删除单链表中重复节点及双向循环链表的设计与实现。通过编程实践,加深对链表数据结构的理解和应用能力。
68 4
|
9天前
|
机器学习/深度学习 存储 C++
【C++数据结构——线性表】单链表的基本运算(头歌实践教学平台习题)【合集】
本内容介绍了单链表的基本运算任务,涵盖线性表的基本概念、初始化、销毁、判定是否为空表、求长度、输出、求元素值、按元素值查找、插入和删除数据元素等操作。通过C++代码示例详细解释了顺序表和链表的实现方法,并提供了测试说明、通 - **任务描述**:实现单链表的基本运算。 - **相关知识**:包括线性表的概念、初始化、销毁、判断空表、求长度、输出、求元素值、查找、插入和删除等操作。 - **测试说明**:平台会对你编写的代码进行测试,提供测试输入和预期输出。 - **通关代码**:给出了完整的C++代码实现。 - **测试结果**:展示了测试通过后的预期输出结果。 开始你的任务吧,祝你成功!
28 5
|
9天前
|
机器学习/深度学习 存储 C++
【C++数据结构——线性表】顺序表的基本运算(头歌实践教学平台习题)【合集】
本文档介绍了线性表的基本运算任务,涵盖顺序表和链表的初始化、销毁、判定是否为空、求长度、输出、查找元素、插入和删除元素等内容。通过C++代码示例详细展示了每一步骤的具体实现方法,并提供了测试说明和通关代码。 主要内容包括: - **任务描述**:实现顺序表的基本运算。 - **相关知识**:介绍线性表的基本概念及操作,如初始化、销毁、判定是否为空表等。 - **具体操作**:详述顺序表和链表的初始化、求长度、输出、查找、插入和删除元素的方法,并附有代码示例。 - **测试说明**:提供测试输入和预期输出,确保代码正确性。 - **通关代码**:给出完整的C++代码实现,帮助完成任务。 文档
26 5
|
23天前
|
数据库
数据结构中二叉树,哈希表,顺序表,链表的比较补充
二叉搜索树,哈希表,顺序表,链表的特点的比较
数据结构中二叉树,哈希表,顺序表,链表的比较补充
|
2月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
86 5
|
2月前
|
存储
顺序表和链表(2)
【10月更文挑战第23天】
顺序表和链表(2)
|
2月前
|
算法
数据结构之购物车系统(链表和栈)
本文介绍了基于链表和栈的购物车系统的设计与实现。该系统通过命令行界面提供商品管理、购物车查看、结算等功能,支持用户便捷地管理购物清单。核心代码定义了商品、购物车商品节点和购物车的数据结构,并实现了添加、删除商品、查看购物车内容及结算等操作。算法分析显示,系统在处理小规模购物车时表现良好,但在大规模购物车操作下可能存在性能瓶颈。
60 0
|
7月前
|
存储 SQL 算法
LeetCode力扣第114题:多种算法实现 将二叉树展开为链表
LeetCode力扣第114题:多种算法实现 将二叉树展开为链表
|
7月前
|
存储 SQL 算法
LeetCode 题目 86:分隔链表
LeetCode 题目 86:分隔链表
|
7月前
|
存储 算法 Java
【经典算法】Leetcode 141. 环形链表(Java/C/Python3实现含注释说明,Easy)
【经典算法】Leetcode 141. 环形链表(Java/C/Python3实现含注释说明,Easy)
69 2

热门文章

最新文章