一分钟学一个 Python 标准库之 Pathlib

简介: 一分钟学一个 Python 标准库之 Pathlib

相对于 os.path 来说,Pathlib 极大地简化了路径相关的操作。举个例子来说:

获取当前文件路径下的 default.yaml 文件

import os
os.path.join(os.path.dirname(__file__), "default.yaml")

只需要:

from pathlib import Path
Path(__file__).parent / "default.yaml"

不难看出,pathlib 有几个优点:

  1. 字符少了很多,出 bug 的地方就少了很多;
  2. 和操作系统一样,pathlib 直接使用路径分隔符 / 来操作,而不是 join 的两个参数;
  3. 非常符合直觉,从左到右阅读。而 os.path 使用函数参数,需要来回跳跃理解。相比之下,Pathlib 阅读起来很清晰。

Python3 标准库中所有接受 str 作为路径参数的地方,现在都可以接受一个 path 对象了。如果你使用的第三方库只接受 str 作为参数, 可以通过 path_str = str(path) 来转化一下。

Pathlib 的其他常用方法:

from pathlib import Path
cwd = Path.cwd()  # 获取当前目录
home = Path.home()  # 获取家目录,比如 /home/ubuntu
path = Path("/home/yifei")  # 创建一个新的 path 对象
path.is_dir()  # 是否是目录
path.is_file()  # 是否是普通文件
path.exist()  # 路径是否存在
path.resolve()  # 解析成绝对路径,比如 Path(".").resolve() 相当于 Path.cwd()
path.mkdir(parent=True, exists_ok=True) # 类似 mkdir -p
# 遍历目录
for child in path.iterdir():
    print(child)
# 除此之外,还有几个很甜的方法,省去了 with open 语句
path = Path("/home/ubuntu/readme.txt")
text = path.read_text()
path.write_text(text)
path = Path("/home/ubuntu/image.png")
image = path.read_bytes()
path.write_bytes(image)
>>> path
PosixPath('/home/ubuntu/test.md')
>>> path.name
'test.md'
>>> path.stem
'test'
>>> path.suffix
'.md'
>>> path.parent
PosixPath('/home/ubuntu')
>>> path.parent.parent
PosixPath('/home')
>>> path.anchor
'/'

在这个注意力涣散的年代,想要经常写一些长篇大论的帖子实在太难了,可能一个月才能憋出一篇。不如分享写简单但是有用的知识点,或许还能经常更新。

以上就是全部内容啦。

目录
相关文章
|
15天前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
18天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
48 0
|
11天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
37 4
|
11天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
23 2
|
17天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
36 7
|
17天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
21 3
|
20天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
43 5
|
19天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
31 2
|
10天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
17天前
|
文字识别 自然语言处理 API
Python中的文字识别利器:pytesseract库
`pytesseract` 是一个基于 Google Tesseract-OCR 引擎的 Python 库,能够从图像中提取文字,支持多种语言,易于使用且兼容性强。本文介绍了 `pytesseract` 的安装、基本功能、高级特性和实际应用场景,帮助读者快速掌握 OCR 技术。
35 0