【算法题目解析】杨氏矩阵数字查找

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 一道面试时可能遇到的算法问题,杨氏矩阵。可以重点关注思考方式,而不是死记硬背。

一 背景

遇到的一道算法题:已知矩阵内的元素,每行 从左到右递增;每列 从上到下递增; 给定一个数字t,要求判断矩阵中是否存在这个元素。

要求:时间复杂度尽可能低

二 概念

这样的矩阵也叫做杨氏矩阵,通常可以用二维数组来表示。

杨氏矩阵示例(1):

这里有一个需要注意的地方,每行的递增和每列的递增,并不能保证跨行情况下的右边数字一定大于左边数字。我们只能知道 左上一定小于右下。

之所以描述这么多,是因为这道查找题目的解答一定要建立在对杨氏矩阵的理解之上。

三 解法和思考

3.1 数组遍历

m行n列数组,逐个数字遍历,最差的时间复杂度为 O(mxn);

3.2 遍历优化-1

3.1的解法没有利用任何已知信息。考虑到一行数字,从左到右递增,那么我们可以在3.1的基础上,把每行内的查找改为使用二分查找的方式,时间复杂度为O(m logn)

如果m!=n,那么还可以降为O(min(mxlogn,nlogm))

3.3 遍历查找优化-2

杨氏矩阵查值的优化:由于杨氏矩阵从左到右从上到下都是逐渐递增的,假如找11这个数,先从第一行从左到右,如果找到大于11的第一个值,此时表明这一行没有值,这时向下找,看下面的值如果大于11向左找,如果找到小于11的第一个值,此时说明这一行也没有要找的值,这时向下继续找,如果下面的值小于要找的值就向右找,如此反复就可以找到目标值,相比于遍历查找少了很多的比较,但是实现过程也比较复杂

3.4 递归解法

所有元素都扫描一遍用递归解法。由杨氏矩阵的特点我们可以每次查找矩阵中当前元素的下边和右边直到要查找的数key小于当前元素那就说明没有这个数不存在返回false,就这样每次改变要查找元素的坐标并递归调用该方法,直到元素的坐标大于这个二维数组的长度时返回false即可。

3.5 分治法查找

在元素中取第一个元素的对角线,由于其特点对角线上的元素也是递增的,如果有就在对角线上,如果没有就找和这个目标值相邻的两个数再通过这两个数找到两个可能存在的子矩阵。之后继续每个矩阵取第一个元素这样就能找到了。这个相邻的子矩阵具体找法是:

对于小的那个值取其右边和下边构成的矩阵。这个矩阵中的值大于它。对于大的那个值取其左边和上边构成的矩阵,该矩阵中的值小于它。这样反复的找对角线,找矩形。就可以找到这个值了。

3.6 定位查找法

从右边开始比较元素,如果比目标元素大就往左查找比较,如果比目标元素小就往下然后继续往左找,这个方法相比3.3,好在不用向右查找,因为右边的上面一定大于要查找的值那么它的右边也一定大于要查找的值,这是由杨氏矩阵的特性决定的。

为了简化步骤,最好是从矩阵的右上角(即 第一行 第n-1列) 或 左下角(第m行第0列)开始查找,这样是为了最好地利用矩阵属性。以右上角开始查找为例,这里使用示例矩阵举例,待查找元素为10:

1、右上角元素为8,小于10;而8是本行最大数值,所以只能向下查找,8所在的第一行元素都被排除;

2、9依然小于10,所以继续向下,查到11>10,因此在本行向左查找,(11所在的这列元素都可以排除,因为上面的8、9前两轮已排除,而11以下的元素都大于11,所以自然也都大于10)

3、9<10,因为右侧元素已经都排除,所以只剩下了同列下一行(元素10)这唯一一个选择

4、10正好是要查找的元素,所以返回成功。由此也容易推断,最差的情况是继续在最后一行,向左遍历完剩余的两个元素。

那么这种方法的时间复杂度最差情况为O(m+n)

基于上述的分析和示例所示的推导过程,可以写出如下代码【java版本】:

public class YoungSearch {

public static int findNum(int[][] arr, int row, int col, int target){
    int i=0;
    int j=col-1;
    while(i<row&& j>=0){
        if(arr[i][j] < target){
            ++i;
        }
        else if(arr[i][j]>target){
            --j;
        }else{
            return 1;
        }
    }
    return 0;
}


public static void main(String[] args){
    int a[][] = {
  { 1, 3, 5 }, { 3, 5, 7 }, { 5, 7, 9 }};

    int result = findNum(a, 3,3, 3);
    System.out.println(result);
}

}

相关文章
|
6天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
|
2天前
|
存储 监控 算法
探秘员工泄密行为防线:基于Go语言的布隆过滤器算法解析
在信息爆炸时代,员工泄密行为对企业构成重大威胁。本文聚焦布隆过滤器(Bloom Filter)这一高效数据结构,结合Go语言实现算法,帮助企业识别和预防泄密风险。通过构建正常操作“指纹库”,实时监测员工操作,快速筛查可疑行为。示例代码展示了如何利用布隆过滤器检测异常操作,并提出优化建议,如调整参数、结合日志分析系统等,全方位筑牢企业信息安全防线,守护核心竞争力。
|
24天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
50 17
|
29天前
|
算法 搜索推荐 Java
【潜意识Java】深度解析黑马项目《苍穹外卖》与蓝桥杯算法的结合问题
本文探讨了如何将算法学习与实际项目相结合,以提升编程竞赛中的解题能力。通过《苍穹外卖》项目,介绍了订单配送路径规划(基于动态规划解决旅行商问题)和商品推荐系统(基于贪心算法)。这些实例不仅展示了算法在实际业务中的应用,还帮助读者更好地准备蓝桥杯等编程竞赛。结合具体代码实现和解析,文章详细说明了如何运用算法优化项目功能,提高解决问题的能力。
58 6
|
2月前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
2月前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
273 30
|
2月前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
3月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
132 2
|
2月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
2月前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析

推荐镜像

更多