【算法题目解析】杨氏矩阵数字查找

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 一道面试时可能遇到的算法问题,杨氏矩阵。可以重点关注思考方式,而不是死记硬背。

一 背景

遇到的一道算法题:已知矩阵内的元素,每行 从左到右递增;每列 从上到下递增; 给定一个数字t,要求判断矩阵中是否存在这个元素。

要求:时间复杂度尽可能低

二 概念

这样的矩阵也叫做杨氏矩阵,通常可以用二维数组来表示。

杨氏矩阵示例(1):

这里有一个需要注意的地方,每行的递增和每列的递增,并不能保证跨行情况下的右边数字一定大于左边数字。我们只能知道 左上一定小于右下。

之所以描述这么多,是因为这道查找题目的解答一定要建立在对杨氏矩阵的理解之上。

三 解法和思考

3.1 数组遍历

m行n列数组,逐个数字遍历,最差的时间复杂度为 O(mxn);

3.2 遍历优化-1

3.1的解法没有利用任何已知信息。考虑到一行数字,从左到右递增,那么我们可以在3.1的基础上,把每行内的查找改为使用二分查找的方式,时间复杂度为O(m logn)

如果m!=n,那么还可以降为O(min(mxlogn,nlogm))

3.3 遍历查找优化-2

杨氏矩阵查值的优化:由于杨氏矩阵从左到右从上到下都是逐渐递增的,假如找11这个数,先从第一行从左到右,如果找到大于11的第一个值,此时表明这一行没有值,这时向下找,看下面的值如果大于11向左找,如果找到小于11的第一个值,此时说明这一行也没有要找的值,这时向下继续找,如果下面的值小于要找的值就向右找,如此反复就可以找到目标值,相比于遍历查找少了很多的比较,但是实现过程也比较复杂

3.4 递归解法

所有元素都扫描一遍用递归解法。由杨氏矩阵的特点我们可以每次查找矩阵中当前元素的下边和右边直到要查找的数key小于当前元素那就说明没有这个数不存在返回false,就这样每次改变要查找元素的坐标并递归调用该方法,直到元素的坐标大于这个二维数组的长度时返回false即可。

3.5 分治法查找

在元素中取第一个元素的对角线,由于其特点对角线上的元素也是递增的,如果有就在对角线上,如果没有就找和这个目标值相邻的两个数再通过这两个数找到两个可能存在的子矩阵。之后继续每个矩阵取第一个元素这样就能找到了。这个相邻的子矩阵具体找法是:

对于小的那个值取其右边和下边构成的矩阵。这个矩阵中的值大于它。对于大的那个值取其左边和上边构成的矩阵,该矩阵中的值小于它。这样反复的找对角线,找矩形。就可以找到这个值了。

3.6 定位查找法

从右边开始比较元素,如果比目标元素大就往左查找比较,如果比目标元素小就往下然后继续往左找,这个方法相比3.3,好在不用向右查找,因为右边的上面一定大于要查找的值那么它的右边也一定大于要查找的值,这是由杨氏矩阵的特性决定的。

为了简化步骤,最好是从矩阵的右上角(即 第一行 第n-1列) 或 左下角(第m行第0列)开始查找,这样是为了最好地利用矩阵属性。以右上角开始查找为例,这里使用示例矩阵举例,待查找元素为10:

1、右上角元素为8,小于10;而8是本行最大数值,所以只能向下查找,8所在的第一行元素都被排除;

2、9依然小于10,所以继续向下,查到11>10,因此在本行向左查找,(11所在的这列元素都可以排除,因为上面的8、9前两轮已排除,而11以下的元素都大于11,所以自然也都大于10)

3、9<10,因为右侧元素已经都排除,所以只剩下了同列下一行(元素10)这唯一一个选择

4、10正好是要查找的元素,所以返回成功。由此也容易推断,最差的情况是继续在最后一行,向左遍历完剩余的两个元素。

那么这种方法的时间复杂度最差情况为O(m+n)

基于上述的分析和示例所示的推导过程,可以写出如下代码【java版本】:

public class YoungSearch {

public static int findNum(int[][] arr, int row, int col, int target){
    int i=0;
    int j=col-1;
    while(i<row&& j>=0){
        if(arr[i][j] < target){
            ++i;
        }
        else if(arr[i][j]>target){
            --j;
        }else{
            return 1;
        }
    }
    return 0;
}


public static void main(String[] args){
    int a[][] = {
  { 1, 3, 5 }, { 3, 5, 7 }, { 5, 7, 9 }};

    int result = findNum(a, 3,3, 3);
    System.out.println(result);
}

}

相关文章
|
2月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
54 3
|
17天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
107 30
|
20天前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
153 15
|
2月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
1月前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
71 4
|
1月前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
2月前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。
|
1月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
72 2
|
2月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
77 0
|
2月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
62 0

推荐镜像

更多