万能的zookeeper,分布式环境的动物管理员

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
简介: 万能的zookeeper,分布式环境的动物管理员

这是我的第43篇原创


今天跟你聊聊分布式环境的老中医ZooKeeper,专治各种不服。在大数据环境中,这个zookeeper是一个非常独特的存在,很多组件高度依赖ZK,一旦脱离了ZK就无法运行了,比如Kafka、Hbase等。Hadoop生态圈里有很多的动物,什么大象、蜂象、松鼠啥的。ZooKeeper的就像是他的名字一样,是Hadoop体系这个动物园里的管理员,专门负责让这些动物乖乖听话的。


Hadoop生态圈

图是网上找的,好像是个韩国人画的,右下角有版权,但是已经看不清了。

Hadoop是只大象,hive是大象+蜜蜂,Flink是是松鼠,Chukwa是只乌龟,pig是只猪,TEZ是个大象脑袋,TAJO是一只鸵鸟。整个Hadoop体系就像是一个动物园一样,管理着整个动物园。

之前有聊过,所有的分布式场景都会涉及到一致性的问题。于是apache基金会成立了一个项目,把一致性的能力抽象出来,这就有了分布式一致性协调器--ZooKeeper。


ZooKeeper原子广播协议

早期的分布式应用都各自实现了一致性的功能。在ZooKeeper出现之后,很多应用直接把一致性的事情交给ZooKeeper了,比如kafka、HBASE等。前面分享过分布式一致性协议的鼻祖-paxos。但是ZooKeeper用的是ZAB(ZooKeeper Atomic Broadcast),也就是Zookeeper原子消息广播协议。

ZAB的逻辑大致如上图所示。与Paxos去中心化不同,ZAB选择了使用一个全局唯一的Leader来做决定。

  • Leader把客户端的事务请求转化为一个事务Proposal即提案/提议,并将Proposal提案发给集群里所有的Follower节点服务器。
  • 所有Follower收到Proposal提案之后,会给一个ack反馈。
  • 当Leader收到了一半以上的节点的正确反馈后,Leader就会直接下发Commit指令给所有节点。
  • 所有Follower收到Commit指令之后就会递交之前收到的Proposal提案。

这个逻辑是不是很像2PC啊?对,这就是一个简化版的2PC。


但是这个结构有一个致命的问题:Leader是单点的,单点永远最危险。万一Leader挂了怎么办?没事,ZAB有一个崩溃恢复模式,专门应对这种情况,简单来说就是一旦集群里的Leader崩溃了,集群会立刻开始投票,选举一个Leader,然后大家继续进行上面的流程。

ZAB选举流程:

每个服务器都有一个zxid,同时有自己的myid,ZAB就是通过这两个id进行选举的。基本上会通过两个步骤完成选举:

  • 首次投票:每个服务器将自己的MyID和ZXID传给集群中其他所有的节点;
  • 二次投票:每个节点收到所有节点的MyID和ZXID后,先比对ZXID,选取最大的那个,如果ZXID一样,则选取MyID最大的,重新投票。


ZooKeeper架构

上面其实已经把ZooKeeper的原理细细的捋了一遍,一句话总结,其实就是二阶段递交+过半写+选举机制。

ZooKeeper一共定义了3种角色:

Leader:全局唯一,负责进行投票的发起和决议,更新系统状态;

Follower:收集客户端的请求,并返回结果,参与投票;

ObServe:提供客户端的读服务,不参与投票,只同步leader的状态。

ZooKeeper的每个节点都会存储所有的数据,他们会进行实时的同步。因为ZooKeeper只负责解决一致性的问题,所以其实它们需要存储的数据并不多,因此可以做到每个节点都存储所有数据。


ZooKeeper的Watch机制

ZooKeeper在帮助集群达成一致之后,还提供了数据的发布/订阅的功能,这个功能就是通过Watch机制来实现的。

大致的逻辑是这样的:

  • 客户端向ZooKeeper发起注册Watch的请求;
  • ZooKeeper注册Watch监听
  • 客户端把Watch对象存储在Watch Manager中
  • ZooKeeper持续监听事件
  • 一旦事件触发,ZooKeeper通知客户端

这样我们就可以得到非常高效的集群内部各种信息发现的服务。这样我们就可以监听节点数据变更、节点删除、子节点状态变更等事件,非常的好用。基于这个功能,我们可以把ZooKeeper当做服务发现、数据订阅等用途。


总结

ZooKeeper通过ZAB协议,做到集群内数据一致性;

通过选举机制解决Leader单点问题;

通过Watch提供各种监听、通知的服务。

另外还有Znode、ACL权限控制等内容去完成数据存储和权限控制的功能。

所以ZooKeeper的功能非常强大,用架构师的话来说,所有分布式系统中的疑难杂症可以直接扔给ZooKeeper,让它给一个结果。

这里罗列一下ZooKeeper的用途:

  • 统一命名服务
  • 分布式锁
  • 数据发布与订阅(配置管理)
  • 负载均衡
  • 分布式通知/协调
  • 集群管理与Master选举
  • 分布式队列

所以也就不奇怪,为啥kafka、Hbase等组件必须强依赖ZooKeeper了,因为它的能力可以完美满足这些组件的各种需求。

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
2月前
|
安全 应用服务中间件 API
微服务分布式系统架构之zookeeper与dubbo-2
微服务分布式系统架构之zookeeper与dubbo-2
|
2月前
|
负载均衡 Java 应用服务中间件
微服务分布式系统架构之zookeeper与dubbor-1
微服务分布式系统架构之zookeeper与dubbor-1
|
1月前
|
分布式计算 NoSQL Java
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
43 2
|
1月前
|
分布式计算 Hadoop
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
47 1
|
1月前
|
SQL NoSQL 安全
分布式环境的分布式锁 - Redlock方案
【10月更文挑战第2天】Redlock方案是一种分布式锁实现,通过在多个独立的Redis实例上加锁来提高容错性和可靠性。客户端需从大多数节点成功加锁且总耗时小于锁的过期时间,才能视为加锁成功。然而,该方案受到分布式专家Martin的质疑,指出其在特定异常情况下(如网络延迟、进程暂停、时钟偏移)可能导致锁失效,影响系统的正确性。Martin建议采用fencing token方案,以确保分布式锁的正确性和安全性。
43 0
|
1月前
|
存储 SQL 消息中间件
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
47 0
|
1月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
3月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
112 2
基于Redis的高可用分布式锁——RedLock
|
3月前
|
缓存 NoSQL Java
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
这篇文章是关于如何在SpringBoot应用中整合Redis并处理分布式场景下的缓存问题,包括缓存穿透、缓存雪崩和缓存击穿。文章详细讨论了在分布式情况下如何添加分布式锁来解决缓存击穿问题,提供了加锁和解锁的实现过程,并展示了使用JMeter进行压力测试来验证锁机制有效性的方法。
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
|
9天前
|
NoSQL Redis
Redis分布式锁如何实现 ?
Redis分布式锁通过SETNX指令实现,确保仅在键不存在时设置值。此机制用于控制多个线程对共享资源的访问,避免并发冲突。然而,实际应用中需解决死锁、锁超时、归一化、可重入及阻塞等问题,以确保系统的稳定性和可靠性。解决方案包括设置锁超时、引入Watch Dog机制、使用ThreadLocal绑定加解锁操作、实现计数器支持可重入锁以及采用自旋锁思想处理阻塞请求。
43 16