【从零学习python 】80.线程访问全局变量与线程安全问题

简介: 【从零学习python 】80.线程访问全局变量与线程安全问题

线程访问全局变量与线程安全问题

摘要

本篇文章探讨了线程访问全局变量及其可能引发的安全问题。在多线程编程中,全局变量可以方便地在不同线程之间共享数据,但同时也带来了线程非安全的风险。通过示例代码演示了全局变量的访问和修改,并说明了线程非安全可能导致的数据混乱情况。此外,还介绍了线程安全问题,以一个卖票的场景为例,展示了多个线程对共享资源进行操作时可能出现的问题。

技术标签

  1. 多线程编程
  2. 全局变量访问
  3. 线程非安全
  4. 线程同步
  5. 共享资源管理

同步

当多个线程几乎同时修改某一个共享数据的时候,需要进行同步控制。同步就是协同步调,按预定的先后次序进行运行。线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。

互斥锁

互斥锁为资源引入一个状态:锁定/非锁定。

某个线程要更改共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。

threading模块中定义了Lock类,可以方便地处理锁定:

# 创建锁
mutex = threading.Lock()
# 锁定
mutex.acquire()
# 释放
mutex.release()

注意:

  • 如果这个锁之前是没有上锁的,那么acquire不会堵塞。
  • 如果在调用acquire对这个锁上锁之前,它已经被其他线程上了锁,那么此时acquire会堵塞,直到这个锁被解锁为止。

和文件操作一样,Lock也可以使用with语句快速地实现打开和关闭操作。

使用互斥锁解决卖票问题

import threading
import time
ticket = 20
lock = threading.Lock()
def sell_ticket():
    global ticket
    while True:
        lock.acquire()
        if ticket > 0:
            time.sleep(0.5)
            ticket -= 1
            lock.release()
            print('{}卖了一张票,还剩{}'.format(threading.current_thread().name, ticket))
        else:
            print('{}票卖完了'.format(threading.current_thread().name))
            lock.release()
            break
for i in range(5):
    t = threading.Thread(target=sell_ticket, name='thread-{}'.format(i + 1))
    t.start()

上锁过程

当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。

每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“阻塞”,直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。

线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。

总结

锁的好处:

  • 确保了某段关键代码只能由一个线程从头到尾完整地执行。
    锁的坏处:
  • 阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了。
  • 由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁。
相关文章
|
1月前
|
监控 Kubernetes Java
阿里面试:5000qps访问一个500ms的接口,如何设计线程池的核心线程数、最大线程数? 需要多少台机器?
本文由40岁老架构师尼恩撰写,针对一线互联网企业的高频面试题“如何确定系统的最佳线程数”进行系统化梳理。文章详细介绍了线程池设计的三个核心步骤:理论预估、压测验证和监控调整,并结合实际案例(5000qps、500ms响应时间、4核8G机器)给出具体参数设置建议。此外,还提供了《尼恩Java面试宝典PDF》等资源,帮助读者提升技术能力,顺利通过大厂面试。关注【技术自由圈】公众号,回复“领电子书”获取更多学习资料。
|
18天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
97 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
5天前
|
Python
python3多线程中使用线程睡眠
本文详细介绍了Python3多线程编程中使用线程睡眠的基本方法和应用场景。通过 `time.sleep()`函数,可以使线程暂停执行一段指定的时间,从而控制线程的执行节奏。通过实际示例演示了如何在多线程中使用线程睡眠来实现计数器和下载器功能。希望本文能帮助您更好地理解和应用Python多线程编程,提高程序的并发能力和执行效率。
34 20
|
1天前
|
Python
python pandas学习(一)
该代码段展示了四个主要操作:1) 删除指定列名,如商品id;2) 使用正则表达式模糊匹配并删除列,例如匹配订单商品名称1的列;3) 将毫秒级时间戳转换为带有时区调整的日期时间格式,并增加8小时以适应本地时区;4) 将列表转换为DataFrame后保存为Excel文件,文件路径和名称根据变量拼接而成。
12 3
|
2月前
|
Python 容器
Python学习的自我理解和想法(9)
这是我在B站跟随千锋教育学习Python的第9天,主要学习了赋值、浅拷贝和深拷贝的概念及其底层逻辑。由于开学时间紧张,内容较为简略,但希望能帮助理解这些重要概念。赋值是创建引用,浅拷贝创建新容器但元素仍引用原对象,深拷贝则创建完全独立的新对象。希望对大家有所帮助,欢迎讨论。
|
2月前
|
Python
Python学习的自我理解和想法(10)
这是我在千锋教育B站课程学习Python的第10天笔记,主要学习了函数的相关知识。内容包括函数的定义、组成、命名、参数分类(必须参数、关键字参数、默认参数、不定长参数)及调用注意事项。由于开学时间有限,记录较为简略,望谅解。通过学习,我理解了函数可以封装常用功能,简化代码并便于维护。若有不当之处,欢迎指正。
|
1月前
|
数据可视化 数据挖掘 大数据
1.1 学习Python操作Excel的必要性
学习Python操作Excel在当今数据驱动的商业环境中至关重要。Python能处理大规模数据集,突破Excel行数限制;提供丰富的库实现复杂数据分析和自动化任务,显著提高效率。掌握这项技能不仅能提升个人能力,还能为企业带来价值,减少人为错误,提高决策效率。推荐从基础语法、Excel操作库开始学习,逐步进阶到数据可视化和自动化报表系统。通过实际项目巩固知识,关注新技术,为职业发展奠定坚实基础。
|
2月前
|
存储 安全 索引
Python学习的自我理解和想法(8)
这是我在B站千锋教育学习Python的第8天,主要内容是元组。元组是一种不可变的序列数据类型,用于存储一组有序的元素。本文介绍了元组的基本操作,包括创建、访问、合并、切片、遍历等,并总结了元组的主要特点,如不可变性、有序性和可作为字典的键。由于开学时间紧张,内容较为简略,望见谅。
|
8天前
|
Linux
Linux编程: 在业务线程中注册和处理Linux信号
本文详细介绍了如何在Linux中通过在业务线程中注册和处理信号。我们讨论了信号的基本概念,并通过完整的代码示例展示了在业务线程中注册和处理信号的方法。通过正确地使用信号处理机制,可以提高程序的健壮性和响应能力。希望本文能帮助您更好地理解和应用Linux信号处理,提高开发效率和代码质量。
38 17
|
17天前
|
Linux
Linux编程: 在业务线程中注册和处理Linux信号
通过本文,您可以了解如何在业务线程中注册和处理Linux信号。正确处理信号可以提高程序的健壮性和稳定性。希望这些内容能帮助您更好地理解和应用Linux信号处理机制。
50 26

推荐镜像

更多