BWA序列比对方法丨针对较大基因组的并行计算和性能优化方式,利用多线程和负载均衡策略提高效率

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: BWA序列比对方法丨针对较大基因组的并行计算和性能优化方式,利用多线程和负载均衡策略提高效率

BWA 序列比对

高通量测序技术日新月异发展迅猛,产生了数亿级大数据,生命的世界由DNA序列ATCG组成,正如计算机的世界由二进制01组成。

高通量测序的工作实质是把一本生命字典撕成碎片,然后每人手里拿一片,招募成千上万人同时测量各自手中的片段,然后根据参考字典进行拼接,这样可以快速的获得全部内容。

BWA全称是Burrows Wheeler Aligner,目前高通量测序中使用最广泛的一款软件。短序列比对是将测序得到的短片段在回帖到基因组上,像目前流行的RNAseq分析,外显子分析,全基因组WGS等都需要利用短序列比对。


本篇笔记分享BWA软件的使用方法与流程简介,同时讨论针对大规模参考基因组的并行计算和性能优化方式,比如小麦等参考基因组复杂庞大的情况,利用切分片段和多线程技术快速进行序列比对,并补充BWA处理较大参考基因组的几种方法。

下载与安装

  • 方式一:使用包管理器自动安装

(适用于Linux和macOS)

打开终端窗口,对于Linux用户,使用适用于你的发行版的包管理器安装BWA。例如,对于Ubuntu或Debian用户,可以运行以下命令:

sudo apt-get update
sudo apt-get install bwa

对于其他Linux发行版,请使用相应的包管理器命令进行安装。对于macOS用户,可以使用Homebrew安装BWA。在终端中运行以下命令:

brew update
brew install bwa

验证BWA是否安装成功。在终端中运行以下命令,检查版本号:

bwa version
  • 方式二:手动安装BWA

(适用于任何操作系统)

打开浏览器,访问BWA的官方网站:https://github.com/lh3/bwa。在页面上找到并点击"Clone or download"按钮,然后点击"Download ZIP"将BWA的源代码下载到本地。

打开终端窗口,在命令行中切换到BWA源代码的目录,例如:

cd /path/to/bwa

在终端中输入以下命令编译和安装BWA:

make
sudo make install
  • 方式三:Github开发者
git clone https://github.com/lh3/bwa.git
cd bwa; make
./bwa index ref.fa
./bwa mem ref.fa read-se.fq.gz | gzip -3 > aln-se.sam.gz
./bwa mem ref.fa read1.fq read2.fq | gzip -3 > aln-pe.sam.gz

使用方法与流程简介

参考基因组与索引文件

进行 reads 的比对前,需要对 fasta 文件构建index索引,其中ref.fa是参考基因组序列,genome是输出索引的前缀,方法如下:

bwa index ref.fa -p genome

mem序列比对

使用BWA的mem命令进行测序数据比对,因此,对于一条序列的不同区域可能会产生多种最优匹配结果,这对于long reads 来说尤为重要。特殊情况下,可以使用 –M 选项来将shorter split hits标记为次优。

$ bwa mem ref.fa reads.fq > mem-se.sam
$ bwa mem ref.fa read1.fq read2.fq > mem-pe.sam
$ bwa mem -t 4 -M -R "\@RG\t
                      ID:{library}\t
                      LB:{library}\t
                      PL:Illumina\t
                      PU:{sample}\t
                      SM:{sample}\" \
ref.fa read1.fastq read2.fastq > mem-pe.sam 2> ./mem-pe.log"
$ bwa mem reference.fasta read1.fastq read2.fastq > alignment.sam

在以上命令中,reference.fasta是参考基因组文件,read1.fastq和read2.fastq是双端测序数据的FASTQ格式文件。比对结果将通过重定向符号保存到alignment.sam文件中。

BWA-MEM算法是BWA中最常用和最适用于长读段的比对算法,它能够对较长的测序读段执行准确的比对,并具有较好的插入片段和结构变异识别能力。

-R 设置reads标头,也就是sam文件中的RG部分,为什么要设置RG表头呢,因为同一样品可能包括多个测序结果,来自不同lane,不同文库,或者不同样品的比对结果合并到同一个文件中进行处理,就需要通过RG进行标记区分。

RG每个标记用冒号分割键和值,不同标记用 '\t' 分隔。例如'@RG\tID:foo\tSM:bar\tLB:library1'

-t 设置线程数,多线程可以显著提高比对效率,对于多核服务器提高线程有利于缩短计算时间。

BWA优化策略与并行计算

BWA-MEM算法在处理大数据量时可以采用一些优化策略和并行化方法来提高比对效率,下面分享几种常用的优化策略和并行化方法:

多线程处理

BWA-MEM可以通过设置线程数来进行并行化,将比对任务分配给多个线程同时执行,从而充分利用多核处理器的计算能力。可以使用BWA的-t参数指定线程数。例如:

bwa mem -t 8 reference.fasta read1.fastq read2.fastq > alignment.sam

子区域分析

对于较大的参考基因组,可以将其划分为多个子区域,并使用多个BWA-MEM实例并行比对各个子区域的测序数据。然后可以通过合并子区域的比对结果来获得整体的比对结果。

内存限制

BWA-MEM默认使用较大的内存来处理测序数据,但在处理大数据量时,可以通过调整BWA的-m参数来限制内存使用。根据实际情况,可以适当减少内存限制,从而节约内存资源并提高比对速度。

直接存储比对结果

默认情况下,BWA-MEM会将比对结果存储在内存中,并在全部比对完成后写入输出文件。对于大数据量,可以通过设置-T参数,直接将比对结果写入磁盘文件,避免过多的内存占用。


这些优化策略和并行化方法可以根据实际需求和硬件配置进行调整和应用,以提高BWA-MEM算法在处理大数据量时的比对效率。同时,还可以考虑使用其他工具如SAMtools、Picard等进行后续的数据处理和分析,以实现更高效的数据处理流程。

如何处理较大的参考基因组?

BWA-MEM算法可以处理较大的参考基因组,主要通过以下几种方式进行处理:

索引压缩:

BWA-MEM会在建立参考基因组索引时进行压缩,以减小索引文件的大小。这样可以降低内存占用,并提高处理大基因组的效率。

负载均衡:

BWA-MEM会自动将较大的参考基因组分割成多个较小的区域,然后针对每个区域进行比对。这种负载均衡的策略可以有效地减少内存占用和加速比对过程。

多线程处理:

BWA-MEM支持多线程处理,可以将比对任务分配给多个线程并行执行。这样可以充分利用多核处理器的计算能力,提高处理大基因组的速度。

辅助软件:

在处理较大的参考基因组时,可以借助其他辅助软件来提高效率。例如,可以使用Picard工具对参考基因组进行预处理,如划分为多个子区域,从而充分利用系统的多核处理能力。


通过这些处理方式,BWA-MEM可以处理较大的参考基因组,并具备较好的比对效率和准确性。在使用BWA-MEM进行较大基因组的比对时,可以根据实际情况进行参数配置和优化,以获得最佳的比对结果和性能。

参考资料:

https://zhuanlan.zhihu.com/p/36267250

https://www.jianshu.com/p/3b86615d647b

https://github.com/lh3/bwa#type

END

© 素材来源于网络,侵权请联系后台删除

笔记合集,点击直达

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
相关文章
|
5月前
|
数据采集 存储 JSON
Python爬取知乎评论:多线程与异步爬虫的性能优化
Python爬取知乎评论:多线程与异步爬虫的性能优化
|
6月前
|
数据库
鸿蒙5开发宝藏案例分享---跨线程性能优化指南
本文深入探讨鸿蒙系统跨线程序列化性能优化,借助DevEco Profiler工具定位序列化瓶颈。通过Sendable接口改造、数据瘦身等方法,将5万本书对象的序列化耗时从260ms+降至<8ms,甚至<1ms。总结避坑经验,建议常态化使用Profiler检测,避免传递大对象,提升多线程开发效率。
|
3月前
|
存储 Oracle Java
|
5月前
|
Java
创建线程的方法
Java中实现多线程有四种方式:1. 继承Thread类,简单但占用继承机会,耦合度高;2. 实现Runnable接口,推荐方式,任务与线程解耦,支持Lambda;3. 实现Callable接口配合FutureTask,可获取返回值和异常;4. 使用线程池(ExecutorService),企业推荐,管理线程生命周期,提升性能,支持多种线程池类型。
145 1
|
6月前
|
缓存 负载均衡 网络协议
电商API接口性能优化技术揭秘:缓存策略与负载均衡详解
电商API接口性能优化是提升系统稳定性和用户体验的关键。本文聚焦缓存策略与负载均衡两大核心,详解其在电商业务中的实践。缓存策略涵盖本地、分布式及CDN缓存,通过全量或部分缓存设计和一致性维护,减少后端压力;负载均衡则利用反向代理、DNS轮询等技术,结合动态调整与冗余部署,提高吞吐量与可用性。文中引用大型及跨境电商平台案例,展示优化效果,强调持续监控与迭代的重要性,为电商企业提供了切实可行的性能优化路径。
|
6月前
|
Java 数据挖掘 调度
Java 多线程创建零基础入门新手指南:从零开始全面学习多线程创建方法
本文从零基础角度出发,深入浅出地讲解Java多线程的创建方式。内容涵盖继承`Thread`类、实现`Runnable`接口、使用`Callable`和`Future`接口以及线程池的创建与管理等核心知识点。通过代码示例与应用场景分析,帮助读者理解每种方式的特点及适用场景,理论结合实践,轻松掌握Java多线程编程 essentials。
401 5
|
6月前
|
人工智能 负载均衡 Cloud Native
云原生之负载均衡策略
ai必学之负载均衡 @[TOC]轮询处理;weight权重;ip_hash
|
10月前
|
人工智能 负载均衡 算法
DeepSeek开源周第四弹之二!EPLB:专为V3/R1设计的专家并行负载均衡器,让GPU利用率翻倍!
EPLB 是 DeepSeek 推出的专家并行负载均衡器,通过冗余专家策略和负载均衡算法,优化大规模模型训练中的 GPU 资源利用率和训练效率。
570 1
DeepSeek开源周第四弹之二!EPLB:专为V3/R1设计的专家并行负载均衡器,让GPU利用率翻倍!
|
11月前
|
负载均衡 算法
架构学习:7种负载均衡算法策略
四层负载均衡包括数据链路层、网络层和应用层负载均衡。数据链路层通过修改MAC地址转发帧;网络层通过改变IP地址实现数据包转发;应用层有多种策略,如轮循、权重轮循、随机、权重随机、一致性哈希、响应速度和最少连接数均衡,确保请求合理分配到服务器,提升性能与稳定性。
2341 11
架构学习:7种负载均衡算法策略
|
11月前
|
负载均衡 IDE Java
SpringBoot整合XXL-JOB【04】- 以GLUE模式运行与执行器负载均衡策略
在本节中,我们将介绍XXL-JOB的GLUE模式和集群模式下的路由策略。GLUE模式允许直接在线上改造方法为定时任务,无需重新部署。通过一个测试方法,展示了如何在调度中心配置并使用GLUE模式执行定时任务。接着,我们探讨了多实例环境下的负载均衡策略,确保任务不会重复执行,并可通过修改路由策略(如轮训)实现任务在多个实例间的均衡分配。最后,总结了GLUE模式和负载均衡策略的应用,帮助读者更深入理解XXL-JOB的使用。
593 9
SpringBoot整合XXL-JOB【04】-  以GLUE模式运行与执行器负载均衡策略

相关实验场景

更多