Grounded-SAM模型:自动化检测、分割、生成一切

本文涉及的产品
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 借着Meta发布的Segment Anything视觉大模型,作者团队做了一个最强Zero-Shot视觉应用:最强的Zero-Shot检测器,最强的Zero-Shot分割器,最强的Zero-Shot生成器,三合一模型简称为Grounded-SAM。

借着Meta发布的Segment Anything视觉大模型,作者团队做了一个最强Zero-Shot视觉应用:最强的Zero-Shot检测器,最强的Zero-Shot分割器,最强的Zero-Shot生成器,三合一模型简称为Grounded-SAM



项目链接:https://github.com/IDEA-Research/Grounded-Segment-Anything

 

DSW链接:

https://pai.console.aliyun.com/?regionId=cn-hangzhou&workspaceId=42414#/dsw-gallery-workspace/preview/deepLearning/cv/grounded-sam



三种类型的模型可以分开使用,也可以组合式使用,组建出强大的视觉工作流模型,整个工作流拥有了检测一切,分割一切,生成一切的能力。



经过了几天的迭代,Grounded-SAM迎来了第二波更新,这一波直接一步到位,直接集结了WhisperChatGPTStable DiffusionSegment Anything四大领域的Foundation Models,作者团队做了一个只动嘴不动手的全自动化视觉工具。



 

 

 


BLIP + Grounded-SAM = 自动化标注器!

image.png

可以想象未来只需要语音交互就能够完成所有的视觉工作流任务,这是多么奇妙的一件事情啊!

Grounded SAM

image.png



Grounded-SAM + Stable Diffusion = 数据生成器!

image.png



借助Grounding DINO强大的Zero-Shot检测能力,Grounded SAM可以通过文本描述就可以找到图片中的任意物体,然后通过Segment Anything强大的分割能力,细粒度的分割出mask,最后还可以利用Stable Diffusion对分割出来的区域做可控的文图生成



单点式 -> 组合式

image.png





Grounding DINO例子

image.png

Grounded-Segment-Anything例子

image.png



Gradio APP

image.png



同时我们还提供了可视化网页,可以更方便的尝试各种例子。

更多例子

image.png





图像编辑功能

image.png



语音交互功能

image.png



多轮对话功能

3D全身人体网格恢复

image.png





Grounded-SAM未来的想象空间:

比如可控的自动的生成图像,构建新的数据集。

比如提供更强的基础模型与分割预训练。

比如引入GPT-4,进一步激发视觉大模型的潜力。

比如可以做为预打标工具。

......



欢迎体验和建议!

项目链接:https://github.com/IDEA-Research/Grounded-Segment-Anything

 

相关文章
|
3月前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
【10月更文挑战第6天】如何使用机器学习模型来自动化评估数据质量?
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
103 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
29天前
|
人工智能 编解码 自然语言处理
AGUVIS:指导模型实现 GUI 自动化训练框架,结合视觉-语言模型进行训练,实现跨平台自主 GUI 交互
AGUVIS 是香港大学与 Salesforce 联合推出的纯视觉 GUI 自动化框架,能够在多种平台上实现自主 GUI 交互,结合显式规划和推理,提升复杂数字环境中的导航和交互能力。
79 8
AGUVIS:指导模型实现 GUI 自动化训练框架,结合视觉-语言模型进行训练,实现跨平台自主 GUI 交互
|
5月前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
222 1
|
1月前
|
人工智能 JSON 数据管理
ShowUI:新加坡国立联合微软推出用于 GUI 自动化的视觉-语言-操作模型
ShowUI是由新加坡国立大学Show Lab和微软联合推出的视觉-语言-行动模型,旨在提升图形用户界面(GUI)助手的效率。该模型通过UI引导的视觉令牌选择和交错视觉-语言-行动流,有效减少计算成本并提高训练效率。ShowUI在小规模高质量数据集上表现出色,展现出在GUI自动化领域的潜力。
86 4
ShowUI:新加坡国立联合微软推出用于 GUI 自动化的视觉-语言-操作模型
|
2月前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
2月前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
5月前
|
数据采集 机器学习/深度学习 算法
"揭秘数据质量自动化的秘密武器:机器学习模型如何精准捕捉数据中的‘隐形陷阱’,让你的数据分析无懈可击?"
【8月更文挑战第20天】随着大数据成为核心资源,数据质量直接影响机器学习模型的准确性和效果。传统的人工审查方法效率低且易错。本文介绍如何运用机器学习自动化评估数据质量,解决缺失值、异常值等问题,提升模型训练效率和预测准确性。通过Python和scikit-learn示例展示了异常值检测的过程,最后强调在自动化评估的同时结合人工审查的重要性。
133 2
|
5月前
|
机器学习/深度学习 数据采集 测试技术
利用Python实现简单的机器学习模型软件测试的艺术与科学:探索自动化测试框架的奥秘
【8月更文挑战第27天】在本文中,我们将一起探索如何通过Python编程语言创建一个简单的机器学习模型。我们将使用scikit-learn库中的线性回归模型作为示例,并通过一个实际的数据集来训练我们的模型。文章将详细解释每一步的过程,包括数据预处理、模型训练和预测结果的评估。最后,我们会用代码块展示整个过程,确保读者能够跟随步骤实践并理解每个阶段的重要性。
|
7月前
|
人工智能 人机交互 语音技术
让大模型更懂你的情绪——通义实验室与中科院自动化所联合开源中英双语共情语音对话模型BLSP-Emo
BLSP-Emo模型展示了情感智能在人机交互中的重要性,未来的多模态模型将更加注重情感的识别和表达,使得机器能够更加准确地理解和回应用户的情感状态,甚至生成富有情感的语音反馈。同时,BLSP-Emo展示了将副语言信号对齐到大语言模型语义空间的可能性,我们期待着更加人性化、更具有共情力的对话交互模型的出现。

热门文章

最新文章