来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximize-the-confusion-of-an-exam
题目描述
一位老师正在出一场由 n 道判断题构成的考试,每道题的答案为 true (用 'T' 表示)或者 false (用 'F' 表示)。老师想增加学生对自己做出答案的不确定性,方法是 最大化 有 连续相同 结果的题数。(也就是连续出现 true 或者连续出现 false)。
给你一个字符串 answerKey ,其中 answerKey[i] 是第 i 个问题的正确结果。除此以外,还给你一个整数 k ,表示你能进行以下操作的最多次数:
每次操作中,将问题的正确答案改为 'T' 或者 'F' (也就是将 answerKey[i] 改为 'T' 或者 'F' )。
请你返回在不超过 k 次操作的情况下,最大 连续 'T' 或者 'F' 的数目。
示例 1:
输入:answerKey = "TTFF", k = 2
输出:4
解释:我们可以将两个 'F' 都变为 'T' ,得到 answerKey = "TTTT" 。
总共有四个连续的 'T' 。
示例 2:
输入:answerKey = "TFFT", k = 1
输出:3
解释:我们可以将最前面的 'T' 换成 'F' ,得到 answerKey = "FFFT" 。
或者,我们可以将第二个 'T' 换成 'F' ,得到 answerKey = "TFFF" 。
两种情况下,都有三个连续的 'F' 。
示例 3:
输入:answerKey = "TTFTTFTT", k = 1
输出:5
解释:我们可以将第一个 'F' 换成 'T' ,得到 answerKey = "TTTTTFTT" 。
或者我们可以将第二个 'F' 换成 'T' ,得到 answerKey = "TTFTTTTT" 。
两种情况下,都有五个连续的 'T' 。
提示:
n == answerKey.length
1 <= n <= 5 * 104
answerKey[i] 要么是 'T' ,要么是 'F'
1 <= k <= n
解题思路
看起来像个滑动窗口题,确实是滑动窗口,刚刚开始思路是记录TF的变化位置,以变化位置为起点分别求最长的长度,不过时间复杂度为O(n2)并且总漏掉几种情况,那就只能分类讨论了,修改可以将T修改为F,也可以将F修改为T,分两种情况,分别用滑动窗口求出最长长度,取最大值。
求最长的过程可以用一个滑动窗口,并且维护窗口中修改过的字符次数始终小于等于k。
代码展示
class Solution { public: int myMax(string answerKey, int k, char c) { int iLeft = 0, iRight = 0, iSum = 0, iMax = 0; while(iRight < answerKey.size()) { if(answerKey[iRight] == c) { iRight++; } else { if(iSum < k) { iSum++; iRight++; } else { if(answerKey[iLeft] != c) { iSum--; } iLeft++; } } iMax = max(iMax, iRight - iLeft); } return iMax; } int maxConsecutiveAnswers(string answerKey, int k) { return max(myMax(answerKey, k, 'T'), myMax(answerKey, k, 'F')); } };
运行结果