GeaFlow(品牌名TuGraph-Analytics) 已正式开源,欢迎大家关注!!! 欢迎给我们 Star 哦! GitHub👉https://github.com/TuGraph-family/tugraph-analytics
更多精彩内容,关注我们的博客 https://geaflow.github.io/
GeaFlow API介绍
GeaFlow API是对高阶用户提供的开发接口,用户可以直接通过编写java代码来编写计算作业,相比于DSL,API的方式开发更加灵活,也能实现更丰富的功能和更复杂的计算逻辑。
在GeaFlow中,API支持Graph API和Stream API两种类型:
- Graph API:Graph是GeaFlow框架的一等公民,当前GeaFlow框架提供了一套基于GraphView的图计算编程接口,包含图构建、图计算及遍历。在GeaFlow中支持Static Graph和Dynamic Graph两种类型。
- Static Graph API:静态图计算API,基于该类API可以进行全量的图计算或图遍历。
- Dynamic Graph API:动态图计算API,GeaFlow中GraphView是动态图的数据抽象,基于GraphView
之上,可以进行动态图计算或图遍历。同时支持对Graphview生成Snapshot快照,基于Snapshot可以提供和Static Graph API一样的接口能力。
- Stream API:GeaFlow提供了一套通用计算的编程接口,包括source构建、流批计算及sink输出。在GeaFlow中支持Batch和Stream两种类型。
- Batch API:批计算API,基于该类API可以进行批量计算。
- Stream API:流计算API,GeaFlow中StreamView是动态流的数据抽象,基于StreamView之上,可以进行流计算。
PageRank算法示例
本例子是从文件中读取点边进行构图,执行pageRank算法后,将每个点的pageRank值进行打印。
其中,用户需要实现AbstractVcFunc,在compute方法中进行每一轮迭代的计算逻辑。
在本例子中,只计算了两轮迭代的结果。在第一轮中,每个点都会向邻居点发送当前点的value值,而在第二轮中,每个点收到邻居点发送的消息,将其value值进行累加,并更新为自己的value值,即为最后的PageRank值。
public class PageRank {
private static final Logger LOGGER = LoggerFactory.getLogger(PageRank.class);
public static final String RESULT_FILE_PATH = "./target/tmp/data/result/pagerank";
private static final double alpha = 0.85;
public static void main(String[] args) {
Environment environment = EnvironmentUtil.loadEnvironment(args);
IPipelineResult result = PageRank.submit(environment);
PipelineResultCollect.get(result);
environment.shutdown();
}
public static IPipelineResult submit(Environment environment) {
Pipeline pipeline = PipelineFactory.buildPipeline(environment);
Configuration envConfig = environment.getEnvironmentContext().getConfig();
envConfig.put(FileSink.OUTPUT_DIR, RESULT_FILE_PATH);
ResultValidator.cleanResult(RESULT_FILE_PATH);
pipeline.submit((PipelineTask) pipelineTaskCxt -> {
Configuration conf = pipelineTaskCxt.getConfig();
PWindowSource<IVertex<Integer, Double>> prVertices =
pipelineTaskCxt.buildSource(new FileSource<>("email_vertex",
line -> {
String[] fields = line.split(",");
IVertex<Integer, Double> vertex = new ValueVertex<>(
Integer.valueOf(fields[0]), Double.valueOf(fields[1]));
return Collections.singletonList(vertex);
}), AllWindow.getInstance())
.withParallelism(conf.getInteger(ExampleConfigKeys.SOURCE_PARALLELISM));
PWindowSource<IEdge<Integer, Integer>> prEdges = pipelineTaskCxt.buildSource(new FileSource<>("email_edge",
line -> {
String[] fields = line.split(",");
IEdge<Integer, Integer> edge = new ValueEdge<>(Integer.valueOf(fields[0]), Integer.valueOf(fields[1]), 1);
return Collections.singletonList(edge);
}), AllWindow.getInstance())
.withParallelism(conf.getInteger(ExampleConfigKeys.SOURCE_PARALLELISM));
int iterationParallelism = conf.getInteger(ExampleConfigKeys.ITERATOR_PARALLELISM);
GraphViewDesc graphViewDesc = GraphViewBuilder
.createGraphView(GraphViewBuilder.DEFAULT_GRAPH)
.withShardNum(2)
.withBackend(BackendType.Memory)
.build();
PGraphWindow<Integer, Double, Integer> graphWindow =
pipelineTaskCxt.buildWindowStreamGraph(prVertices, prEdges, graphViewDesc);
SinkFunction<IVertex<Integer, Double>> sink = ExampleSinkFunctionFactory.getSinkFunction(conf);
graphWindow.compute(new PRAlgorithms(10))
.compute(iterationParallelism)
.getVertices()
.sink(v -> {
LOGGER.info("result {}", v);
})
.withParallelism(conf.getInteger(ExampleConfigKeys.SINK_PARALLELISM));
});
return pipeline.execute();
}
public static class PRAlgorithms extends VertexCentricCompute<Integer, Double, Integer, Double> {
public PRAlgorithms(long iterations) {
super(iterations);
}
@Override
public VertexCentricComputeFunction<Integer, Double, Integer, Double> getComputeFunction() {
return new PRVertexCentricComputeFunction();
}
@Override
public VertexCentricCombineFunction<Double> getCombineFunction() {
return null;
}
}
public static class PRVertexCentricComputeFunction extends AbstractVcFunc<Integer, Double, Integer, Double> {
@Override
public void compute(Integer vertexId,
Iterator<Double> messageIterator) {
IVertex<Integer, Double> vertex = this.context.vertex().get();
List<IEdge<Integer, Integer>> outEdges = context.edges().getOutEdges();
if (this.context.getIterationId() == 1) {
if (!outEdges.isEmpty()) {
this.context.sendMessageToNeighbors(vertex.getValue() / outEdges.size());
}
} else {
double sum = 0;
while (messageIterator.hasNext()) {
double value = messageIterator.next();
sum += value;
}
double pr = sum * alpha + (1 - alpha);
this.context.setNewVertexValue(pr);
if (!outEdges.isEmpty()) {
this.context.sendMessageToNeighbors(pr / outEdges.size());
}
}
}
}
}
提交API作业
(以容器模式,PageRank算法示例)
算法打包
在新的项目中新建一个PageRank的demo,pom中引入geaflow依赖
<dependency>
<groupId>com.antgroup.tugraph</groupId>
<artifactId>geaflow-assembly</artifactId>
<version>0.2-SNAPSHOT</version>
</dependency>
新建PageRank类,编写上述相关代码。
在项目resources路径下,创建测试数据文件email_vertex和email_edge,代码中会从resources://资源路径读取数据进行构图。
PWindowSource<IVertex<Integer, Double>> prVertices =
pipelineTaskCxt.buildSource(new FileSource<>("email_vertex",
line -> {
String[] fields = line.split(",");
IVertex<Integer, Double> vertex = new ValueVertex<>(
Integer.valueOf(fields[0]), Double.valueOf(fields[1]));
return Collections.singletonList(vertex);
}), AllWindow.getInstance())
.withParallelism(conf.getInteger(ExampleConfigKeys.SOURCE_PARALLELISM));
PWindowSource<IEdge<Integer, Integer>> prEdges = pipelineTaskCxt.buildSource(new FileSource<>("email_edge",
line -> {
String[] fields = line.split(",");
IEdge<Integer, Integer> edge = new ValueEdge<>(Integer.valueOf(fields[0]), Integer.valueOf(fields[1]), 1);
return Collections.singletonList(edge);
}), AllWindow.getInstance())
.withParallelism(conf.getInteger(ExampleConfigKeys.SOURCE_PARALLELISM));
email_vertex
0,1
1,1
2,1
3,1
4,1
5,1
6,1
7,1
8,1
9,1
email_edge
4,3
0,1
2,3
4,6
2,4
6,8
0,2
4,8
0,5
0,7
0,8
9,0
7,0
7,1
7,2
9,5
3,0
7,4
5,3
7,5
1,0
5,4
9,8
3,4
7,9
3,7
3,8
1,6
8,0
6,0
6,2
8,5
4,2
maven打包,在target目录获取算法的jar包
mvn clean install
新增HLA图任务
在GeaFlow Console中新增图任务,任务类型选择“HLA”, 并上传jar包(或者选择已存在的jar包),其中entryClass为算法主函数所在的类。 点击“提交”,创建任务。
提交作业
点击"发布",可进入作业详情界面,点击“提交”即可提交作业。
查看运行结果
进入容器 /tmp/logs/task/ 目录下,查看对应作业的日志,可看到日志中打印了最终计算得到的每个点的pageRank值。
2023-08-01 16:51:38 INFO PageRank:107 - result ValueVertex(vertexId:0, value:1.5718675107490019)
2023-08-01 16:51:38 INFO PageRank:107 - result ValueVertex(vertexId:1, value:0.5176947080197076)
2023-08-01 16:51:38 INFO PageRank:107 - result ValueVertex(vertexId:2, value:1.0201253300467092)
2023-08-01 16:51:38 INFO PageRank:107 - result ValueVertex(vertexId:3, value:1.3753756869824914)
2023-08-01 16:51:38 INFO PageRank:107 - result ValueVertex(vertexId:4, value:1.4583114077692536)
2023-08-01 16:51:38 INFO PageRank:107 - result ValueVertex(vertexId:5, value:1.1341668910561529)
2023-08-01 16:51:38 INFO PageRank:107 - result ValueVertex(vertexId:6, value:0.6798184364673463)
2023-08-01 16:51:38 INFO PageRank:107 - result ValueVertex(vertexId:7, value:0.70935427506243)
2023-08-01 16:51:38 INFO PageRank:107 - result ValueVertex(vertexId:8, value:1.2827529511906106)
2023-08-01 16:51:38 INFO PageRank:107 - result ValueVertex(vertexId:9, value:0.2505328026562969)
可在作业详情中查看运行详情,
至此,我们就成功使用Geaflow实现并运行API任务了!是不是超简单!快来试一试吧!
GeaFlow(品牌名TuGraph-Analytics) 已正式开源,欢迎大家关注!!!
欢迎给我们 Star 哦!
Welcome to give us a Star!
GitHub👉https://github.com/TuGraph-family/tugraph-analytics
更多精彩内容,关注我们的博客 https://geaflow.github.io/