【OpenCV图像处理12】特征检测与匹配(下)

简介: 【OpenCV图像处理12】特征检测与匹配(下)

1.3.2 实际应用

使用SIFT的步骤:

  • 创建SIFT对象:sift = cv2.xfeatures2d.SIFT_create()
  • 进行检测:kp = sift.detect(gray)
  • 绘制关键点:cv2.drawKeypoints(gray, kp, img)

代码实现:

import cv2
img = cv2.imread('../resource/chess.bmp')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 创建SIFT对象
# 注意:xfeatures2d是OpenCV的扩展包中的内容,需要安装opencv-contrib-python
sift = cv2.xfeatures2d.SIFT_create()
# 进行检测
kp = sift.detect(gray)
# kp是一个列表,存放的是封装的KeyPoint对象
print(kp)
# 绘制关键点
cv2.drawKeypoints(gray, kp, img)
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

1.3.3 关键点和描述子

关键点:位置、大小和方向

关键点描述子:记录了关键点周围对其有共享的像素点的一组向量值,其不受仿射变换、光照变换等影响,描述子的作用就是进行特征匹配,在后面进行特征匹配的时候会用上。

1、计算描述子

kp, des = sift.compute(img, kp)

其作用是进行特征匹配。

2、同时计算关键点和描述子

kp, des = sift.detectAndCompute(img, ...)

mask:指明对img中哪个区域进行计算。

代码实现:

import cv2
img = cv2.imread('../resource/chess.bmp')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 创建SIFT对象
sift = cv2.xfeatures2d.SIFT_create()
# 进行检测
kp = sift.detect(gray)
# 检测关键点,并计算描述子
kp, des = sift.compute(img, kp)
# 或者一步到位,把关键点和描述子一起检测出来
# kp, des = sift.detectAndCompute(img, None)
print(kp)
print(len(kp))
print(type(des))
print(des)
print(des.shape)
(<KeyPoint 000001A931FBFE40>, <KeyPoint 000001A931FBFE70>, <KeyPoint 000001A931FBFEA0>, <KeyPoint 000001A931FBFED0>, <KeyPoint 000001A931FBFF00>, <KeyPoint 000001A931FBFF30>, <KeyPoint 
 ...
000001A931FC47E0>)
391
<class 'numpy.ndarray'>
[[ 0.  0.  9. ...  0.  0.  0.]
 [ 0.  2. 20. ...  0.  0.  0.]
 [ 0.  0. 26. ...  0.  0.  0.]
 ...
 [ 0.  0.  9. ...  0.  0.  0.]
 [ 0.  0.  7. ...  0.  0.  0.]
 [ 0.  5. 29. ...  0.  0.  0.]]
(391, 128)

1.4 SURF特征检测

Speed Up Robust Features(SURF,加速稳健特征),是一种稳健的局部特征点检测和描述算法。

最初由Herbert Bay发表在2006年的欧洲计算机视觉会议(European Conference on Computer Vision,ECCV)上,并在2008年正式发表在Computer Vision and Image Understanding期刊上。

SURF是对David Lowe在1999年提出的SIFT算法的改进,提升了算法的执行效率,为算法在实时计算机视觉系统中应用提供了可能。

如果想对一系列的图像进行快速的特征检测,使用SIFT会非常慢。因此SIFT最大的问题就是速度慢,所以才有了SURF。

注意:SURF在较新版本的OpenCV中已经申请专利。需要降OpenCV版本才能使用,降到3.4.1.15就可以使用了。

使用SURF的步骤:

  • 创建SURF对象:surf = cv2.xfeatures2d.SURF_create()
  • 进行检测:kp, des = surf.detectAndCompute(img, mask)
  • 绘制关键点:cv2.drawKeypoints(gray, kp, img)

代码实现:

import cv2
img = cv2.imread('../resource/chess.bmp')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 创建SURF对象
surf = cv2.xfeatures2d.SURF_create()
# 进行检测
kp, des = surf.detectAndCompute(gray, None)
print(des[0])
# 绘制关键点
cv2.drawKeypoints(gray, kp, img)
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

版权问题,运行不出来,降OpenCV版本也出错了。

1.5 ORB特征检测

ORB(Oriented FAST and Rotated BRIEF),可以做到实时检测。

FAST:可以做到特征点的实时检测。

BRIEF:对已经检测到的特征点进行描述,加快了特征描述符建立的速度,同时也极大的降低了特征匹配的时间。

使用ORB的步骤:

  • 创建ORB对象:orb = cv2.ORB_create()
  • 进行检测:kp, des = orb.detectAndCompute(gray, None)
  • 绘制关键点:cv2.drawKeypoints(gray, kp, img)

代码实现:

import cv2
img = cv2.imread('../resource/chess.bmp')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 创建ORB对象
orb = cv2.ORB_create()
# 进行检测
kp, des = orb.detectAndCompute(gray, None)
print(des[0])
# 绘制关键点
cv2.drawKeypoints(gray, kp, img)
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

2、特征匹配

2.1 暴力特征匹配

BF(Brute-Force),暴力特征匹配方法。它使用第一组中的每个特征的描述子,与第二组中的所有特征描述子进行匹配,计算它们之间的差距,然后将最接近一个匹配返回。

基本步骤:

  • 创建匹配器:cv2.BFMatcher()
  • 进行特征匹配:bf.match()
  • 绘制匹配点:cv2.drawMatches()

BFMatcher()用法:

bf = cv2.BFMatcher(normType: None, crossCheck: None)
  • normType:NORM_L1,NORM_L2(默认),NORM_HAMMING,NORM_HAMMING2,…
  • NORM_L1:取描述子的绝对值进行加法运算
  • NORM_L2:欧氏距离
  • HAMMING:通过判断二进制位

L1 and L2 norms are preferable choices for SIFT and SURF descriptors,

NORM_HAMMING should be used with ORB, BRISK and BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 .

  • crossCheck:是否进行交叉匹配,默认为False

match()用法: 对两幅图的描述子进行计算

match = bf.match(queryDescriptors, trainDescriptors, mask: None)

参数为:SIFT、SURF、ORB等计算的描述子

drawMatches()用法:

cv2.drawMatches(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchColor: None, singlePointColor: None, matchesMask: None, flags: None)

参数为:搜索img, kp;匹配图img,kp;match()方法返回的结果match。

代码实现:

import cv2
img1 = cv2.imread('../resource/cv.bmp')
img2 = cv2.imread('../resource/cv.webp')
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# 创建SIFT特征检测器
sift = cv2.xfeatures2d.SIFT_create()
# 进行检测,计算描述子与特征点
kp1, des1 = sift.detectAndCompute(gray1, None)
kp2, des2 = sift.detectAndCompute(gray2, None)
# 创建匹配器
bf = cv2.BFMatcher(cv2.NORM_L1)
# 进行特征匹配
match = bf.match(des1, des2)
# 绘制匹配点
img = cv2.drawMatches(img1, kp1, img2, kp2, match, None)
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

2.2 FLANN特征匹配

FLANN优缺点:

  • 在进行批量特征匹配时,FLANN速度更快。
  • 由于它使用的是邻近近似值,所以精度较差。

基本步骤:

  • 创建FLANN匹配器:cv2.FlannBasedMatcher()
  • 进行特征匹配:flann.match/knnMatch
  • 绘制匹配点:cv2.drawMatches()/drawMatchesKnn()

FlannBasedMatcher()用法:

# index_params = dict(algorithm=cv2.FLANN_INDEX_KDTREE, tress=5)
index_params = dict(algorithm=1, tress=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
  • index_params字典:匹配算法 KDTREE(SIFT,SURF)、LSH(ORB)
  • search_params字典:指定KDTREE算法中遍历树的次数

knnMatch()用法:

match = cv2.knnMatch(queryDescriptors, trainDescriptors, k, mask: None, compactResult: None)
  • queryDescriptors, trainDescriptors:SIFT,SURF,ORB等计算的描述子
  • k:表示取欧氏距离最近的前k个关键点
  • 返回的是匹配的结果DMatch对象
  • DMatch的内容:
  • distance:描述子之间的距离,值越低越好
  • queryIdx:第一幅图像的描述子索引值
  • trainIdx:第二幅图像的描述子索引值
  • imgIdx:第二幅图像的索引值

drawMatchesKnn()用法:

cv2.drawMatchesKnn(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchColor: None, singlePointColor: None, matchesMask: None, flags: None)

参数为:搜索img,kp;匹配图img,kp;match()方法返回的匹配结果match。

代码实现:

import cv2
# 读取两幅图像
img1 = cv2.imread('../resource/cv.bmp')
img2 = cv2.imread('../resource/cv.webp')
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# 创建SIFT特征检测器
sift = cv2.xfeatures2d.SIFT_create()
# 进行检测,计算描述子与特征点
kp1, des1 = sift.detectAndCompute(gray1, None)
kp2, des2 = sift.detectAndCompute(gray2, None)
# 创建匹配器
# index_params = dict(algorithm=cv2.FLANN_INDEX_KDTREE, tress=5)
index_params = dict(algorithm=1, tress=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
# 进行特征匹配
match = flann.knnMatch(des1, des2, k=2)
# 优化
good = []
for i, (m, n) in enumerate(match):
    if m.distance < 0.7 * n.distance:
        good.append(m)
# 绘制匹配点
ret = cv2.drawMatchesKnn(img1, kp1, img2, kp2, [good], None)
cv2.imshow('ret', ret)
cv2.waitKey(0)
cv2.destroyAllWindows()

3、图像查找

单应性的作用(一):

单应性的作用(二):

代码实现: 特征匹配 + 单应性矩阵

import cv2
import numpy as np
# 读取两幅图像
img1 = cv2.imread('../resource/cv.bmp')
img2 = cv2.imread('../resource/cv.webp')
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# 创建SIFT特征检测器
sift = cv2.xfeatures2d.SIFT_create()
# 进行检测,计算描述子与特征点
kp1, des1 = sift.detectAndCompute(gray1, None)
kp2, des2 = sift.detectAndCompute(gray2, None)
# 创建匹配器
# index_params = dict(algorithm=cv2.FLANN_INDEX_KDTREE, tress=5)
index_params = dict(algorithm=1, tress=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
# 进行特征匹配
match = flann.knnMatch(des1, des2, k=2)
# 优化
good = []
for i, (m, n) in enumerate(match):
    if m.distance < 0.7 * n.distance:
        good.append(m)
# 做判断
if len(good) >= 4:
    # 单应性矩阵
    srcPts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
    dstPts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
    H, _ = cv2.findHomography(srcPts, dstPts, cv2.RANSAC, 5.0)
    # 透视变换
    h, w = img1.shape[:2]
    pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)
    dst = cv2.perspectiveTransform(pts, H)
    # 用线框出来
    cv2.polylines(img2, [np.int32(dst)], True, (255, 0, 255), 3)
else:
    print('The number of good is less than 4.')
    exit()
# 绘制匹配点
ret = cv2.drawMatchesKnn(img1, kp1, img2, kp2, [good], None)
cv2.imshow('ret', ret)
cv2.waitKey(0)
cv2.destroyAllWindows()

目录
相关文章
|
1月前
|
算法 计算机视觉 索引
OpenCV(四十六):特征点匹配
OpenCV(四十六):特征点匹配
44 0
|
1月前
|
算法 计算机视觉
OpenCV(四十三):Shi-Tomas角点检测
OpenCV(四十三):Shi-Tomas角点检测
25 0
|
1月前
|
计算机视觉
OpenCV(三十八):二维码检测
OpenCV(三十八):二维码检测
47 0
|
1月前
|
编解码 计算机视觉
OpenCV(三十六):霍夫直线检测
OpenCV(三十六):霍夫直线检测
25 0
|
1月前
|
计算机视觉 索引
OpenCV(三十五):凸包检测
OpenCV(三十五):凸包检测
24 0
|
1月前
|
存储 资源调度 算法
Opencv(C++)系列学习---SIFT、SURF、ORB算子特征检测
Opencv(C++)系列学习---SIFT、SURF、ORB算子特征检测
|
2月前
|
人工智能 Linux API
OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化)
OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化)
46 0
|
1月前
|
存储 算法 计算机视觉
OpenCV(四十二):Harris角点检测
OpenCV(四十二):Harris角点检测
28 0
|
1月前
|
存储 计算机视觉 C++
Opencv(C++)学习系列---特征点检测和匹配
Opencv(C++)学习系列---特征点检测和匹配
|
1月前
|
算法 计算机视觉
OpenCV(四十七):RANSAC优化特征点匹配
OpenCV(四十七):RANSAC优化特征点匹配
113 0