具有吸引子的非线性系统(Matlab&Simulink实现)

简介: 具有吸引子的非线性系统(Matlab&Simulink实现)

💥1 概述

要在Simulink中实现具有吸引子的非线性系统,可以按照以下步骤进行操作:


1. 打开Simulink并创建一个新的模型。


2. 在模型中添加非线性系统的表示。可以使用Math Function块、Lookup Table块或者自定义的S函数来表示非线性系统的动态行为。根据你所建模的具体系统,选择合适的模块来表示非线性函数。


3. 在系统中添加具有吸引子效应的元素。这可以包括非线性函数中的非线性项、延迟项、反馈或者其他非线性特征。根据具体的吸引子效应,调整系统中的参数和配置。


4. 设置系统的初始条件。使用Initial Condition块来设置模型初始条件。这些初始条件可以影响系统的稳定性和吸引子的形成。


5. 运行模型并观察吸引子效应。使用Simulink模拟器运行模型,并观察系统的行为。通过调整吸引子参数和系统的其他特性,可以进一步探索系统的响应。


请注意,具体的建模和设置步骤会根据你所研究的非线性系统和吸引子特性而有所不同。以上步骤提供了一个一般的指导,具体实现还需要根据你的问题进行调整和定制。


📚2 运行结果

部分代码:

% ax was there in sfunxy, for everything else there's varargin
        if length(ax)~=6, error('Axes limits must be defined.'); end
        % get number of moving points (i.e. number of lines) to be plotted
        if nargin>6, nmax=fix(varargin{2}); else nmax=1; end
        sizes=simsizes; % this initializes size vector to zero
        sizes.NumInputs      = 3*nmax; % input vector size at runtime
        sizes.NumSampleTimes = 1; % fill number of sample times
        % get sample time
        if nargin>5, ts=[varargin{1} 0]; else ts=[0.01 0]; end
        % return initialization values to simulink as function outputs
        sys=simsizes(sizes);x0=[];str=[];
        % get the active figure parameter (toolbar and menubar)
        if nargin>13 && varargin{9}, tb='figure'; else tb='none'; end
        % do the figure initialization
        FigHandle=get_param(gcbh,'UserData');
        if isempty(FigHandle) || ~ishandle(FigHandle)
            % the figure doesn't exist, create one
            FigHandle = figure(...
                'Units',          'pixel',...
                'Position',       [100 100 400 300],...
                'Name',           get_param(gcbh,'Name'),...
                'Tag',            'SIMULINK_3DGRAPH_FIGURE',...
                'NumberTitle',    'off',...
                'IntegerHandle',  'off',...
                'Toolbar',        tb,...
                'Menubar',        tb);
        else
            % otherwise clear it
            clf(FigHandle);
        end
        % get number of moving points, camera position, and grid switch
        if nargin>7, CPos=varargin{3}; else CPos=[3 2 1]*100; end
        if nargin>8 && varargin{4}, GdSw='On'; else GdSw='Off'; end
        % Note: the structure pd contains all the plot data and will be
        % later stored in the figure's userdata!
        % create axes
        pd.XYZAxes = axes('Parent',FigHandle);
        cord=get(pd.XYZAxes,'ColorOrder');
        set(pd.XYZAxes,'Visible','on','Xlim', ax(1:2),'Ylim', ax(3:4),'Zlim', ax(5:6),'CameraPosition',CPos,'XGrid',GdSw,'YGrid',GdSw,'ZGrid',GdSw);
        % get LineStyle string, Marker string, and max num of line points
        if nargin>9, ls=varargin{5}; else ls='-'; end
        if nargin>10, mk=varargin{6}; else mk='none'; end
        if nargin>11, mx=varargin{7}; else mx=1e5; end
        % create a vector of animatedline objects
        pd.XYZLine = [];
        for n=1:nmax
            pd.XYZLine = [pd.XYZLine animatedline('Parent',pd.XYZAxes,'LineStyle',ls,'Marker',mk,'MaximumNumPoints',mx,'Color',cord(1+mod(n-1,size(cord,1)),:))];
        end 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]刘博伦. 具有隐藏吸引子的非线性系统混沌特性研究[D].华北电力大学(北京),2020.DOI:10.27140/d.cnki.ghbbu.2020.001358.

[2]董二女. 粉末注射成形动力系统的混沌吸引子形态研究[D].中南大学,2011.


🌈4 Matlab代码&Simulink仿真实现

目录
打赏
0
0
0
0
78
分享
相关文章
开关磁阻电机(SRM)系统的matlab性能仿真与分析
本课题基于MATLAB 2022a对开关磁阻电机(SRM)系统进行性能仿真与分析,涵盖平均转矩、转矩脉动、自感与互感、功率及效率等关键参数的对比研究。通过程序仿真,生成了相电流、转子角度、机械转速等多维度数据关系图。SRM以其无刷、无永磁体的特点,具备高可靠性和低成本优势,其工作原理基于磁阻最小原则,通过控制定子绕组电流实现连续旋转运动。核心程序实现了不同电流下平均转矩的计算与可视化,为SRM优化设计提供了理论依据。
基于AutoEncode自编码器的端到端无线通信系统matlab误码率仿真
本项目基于MATLAB 2022a实现自编码器在无线通信系统中的应用,仿真结果无水印。自编码器由编码器和解码器组成,通过最小化重构误差(如MSE)进行训练,采用Adam等优化算法。核心程序包括训练、编码、解码及误码率计算,并通过端到端训练提升系统性能,适应复杂无线环境。
137 65
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
基于GARCH-Copula-CVaR模型的金融系统性风险溢出效应matlab模拟仿真
本程序基于GARCH-Copula-CVaR模型,使用MATLAB2022A仿真金融系统性风险溢出效应。核心功能包括计算违约点、资产价值波动率、信用溢价及其直方图等指标。GARCH模型用于描述资产收益波动性,Copula捕捉依赖结构,CVaR度量极端风险。完整代码无水印输出。 具体步骤:首先通过GARCH模型估计单个资产的波动性,再利用Copula方法构建多资产联合分布,最后应用CVaR评估系统性风险。程序展示了详细的运行结果和图表分析,适用于金融市场风险量化研究。
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
116 18
|
8月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
314 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
193 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
246 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章