4.2 操作步骤
安装显卡驱动
使用浏览器访问 NVIDIA 官网,并选择显卡的驱动版本。本文选择配置如下图所示:
下载完成后,请双击安装包,根据页面提示完成安装。
安装 CUDA
进入 CUDA Toolkit Archive,选择对应版本。本文以下载10.2版本为例,如下图所示:
进入 “CUDA Toolkit 10.2 Download” 页面,选择对应系统配置。本文选择配置如下图所示:
单击 Download,开始下载(CUDA 10.1都选择最新的一版)。
4. 下载完成后,请双击安装包,并根据页面提示进行安装。其中,请注意以下步骤:
在弹出的 “CUDA Setup Package” 窗口中,Extraction path 为暂时存放地址,无需修改,保持默认并单击 OK。如下图所示:
配置环境变量
1 在弹出菜单中选择运行。
2. 在“运行”窗口中输入 sysdm.cpl,并单击确定。
3. 在打开的“系统属性”窗口中,选择高级页签,并单击环境变量。如下图所示:
4.选择“系统变量”中的 “Path”,单击编辑。
5. 在弹出的“编辑环境变量”窗口中,新建并输入如下环境变量配置。
/
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\libnvvp C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\lib\x64 C:\Program Files\NVIDIA Corporation\NVSMI
编辑完成后如下图所示:
6.连续单击3次确定,保存设置。
检查显卡驱动及 CUDA
1.在弹出菜单中选择运行。
2. 在“运行”窗口中输入 cmd,并单击确定。
3. 在 cmd 窗口中:
执行以下命令,检查显卡驱动是否安装成功。
nvidia-smi
/
返回如下图所示界面表示显卡驱动安装成功。下图为正在运行中的 GPU,在 GPU 运行时,该命令可查看 GPU 的使用情况。
执行以下命令,检查 CUDA 是否安装成功。
/
nvcc -V
返回如下图所示界面表示 CUDA 安装成功。
安装 cuDNN(见本地文档)
1.前往 cuDNN Download 页面,单击 Archived cuDNN Releases 查看更多版本。
2. 找到所需 cuDNN 版本,并下载。
3. 解压 cuDNN 压缩包,并将 bin、include 及 lib 文件夹拷贝至 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2 目录下。
4. 至此已完成 cuDNN 安装。
可能遇到的后续问题(持续更新)
1、解决Could not load dynamic library ‘cudnn64_7.dll‘; dlerror cudnn64_7.dll not found
解决:下载文件到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA目录下
2、【Python与tensorflow关联报错】ModuleNotFoundError: No module named ‘termcolor‘,但pip3 show termcolor显示包已存在
解决:卸了重装termcolor
3、NVIDIA Jetson Xavier NX上导入tensorflow报错:AttributeError: module ‘wrapt‘ has no attribute ‘ObjectProxy‘
解决:pip3 install wrapt==1.11.1
参考:大神文章