【机器学习实战项目】10分钟学会Python怎么用LDA线性判别模型进行分类预测(五)

简介: 【机器学习实战项目】10分钟学会Python怎么用LDA线性判别模型进行分类预测(五)

[toc]

1 前言

1.1 线性判别模型的介绍

线性判别模型(Linear Discriminant Analysis,LDA)是一种经典的监督学习算法,它旨在通过学习输入特征和它们所属类别之间的线性关系来进行分类任务。线性判别模型通常可以被看作是一种分类器,可以用于二元分类和多元分类问题。

线性判别模型的主要思想是将输入特征空间中的样本投影到一条直线或者一个超平面上,从而实现对样本的分类。这个超平面的选择是通过最小化类内距离和最大化类间距离来完成的。类内距离指的是同一类别样本之间的距离,类间距离则指不同类别样本之间的距离。通过最小化类内距离和最大化类间距离,线性判别模型能够更好地区分不同类别的样本。

优点:

  • 线性判别模型是一种经典的监督学习算法,具有较高的可解释性和可理解性,能够提供直观的结果。
  • 线性判别模型具有较快的训练速度和较低的存储成本,适用于处理大型数据集。
  • 线性判别模型能够在高维数据中很好地工作,并且在特征选择方面具有很好的性能。

缺点:

  • 线性判别模型是一种线性模型,对于非线性分类问题的表现可能较差。
  • 线性判别模型对于噪声数据和异常值比较敏感,容易造成误分类。
  • 线性判别模型的分类效果受特征之间相关性的影响,如果存在高度相关的特征,分类效果可能较差。

1.2 线性判别模型的应用

线性判别模型广泛应用于数据分类、降维和特征提取等领域,在实际应用中有很多场景,例如:

  1. 信用评分:根据用户的个人信息和历史数据,对其信用评分进行分类,以决定是否批准贷款。
  2. 医学诊断:根据患者的生理指标和症状,将其分为健康和患病两类,以进行诊断和治疗。
  3. 人脸识别:根据人脸图像的特征向量,将其分为不同的人脸类别,以实现人脸识别和身份验证。
  4. 情感分析:根据文本内容中的关键词和情感指标,将其分为正面、负面和中性等不同的情感类别。
  5. 图像分类:根据图像的特征向量,将其分为不同的图像类别,以进行图像识别和分类等。

在生信领域还是常用于基因表达数据分析、蛋白结构预测、biomarker鉴定和药物设计,LDA可以用于分析分子结构和描述化学性质,从而优化药物设计和发现。

2 demo数据演示

2.1 导入函数

import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.datasets import make_classification

2.2 训练模型

# 制作四个类别的数据,每个类别100个样本
X, y = make_classification(n_samples=1000, n_features=3, n_redundant=0,
                           n_classes=4, n_informative=2, n_clusters_per_class=1,
                           class_sep=3, random_state=10)
# 可视化分布
fig = plt.figure()
ax = Axes3D(fig, rect=[0, 0, 1, 1], elev=20, azim=20,auto_add_to_figure=False)
fig.add_axes(ax)
ax.scatter(X[:, 0], X[:, 1], X[:, 2], marker='o', c=y)
plt.show()

建模

# 建立 LDA 模型
lda = LinearDiscriminantAnalysis()
# 训练模型
lda.fit(X, y)
# 查看 LDA 模型的参数
lda.get_params()

2.3 预测模型

# 进行模型预测
X_new = lda.transform(X)
# 可视化预测数据
plt.scatter(X_new[:, 0], X_new[:, 1], marker='o', c=y)
plt.show()

用新数据测试

a = np.array([[-1, 0.1, 0.1]])
print(f"{a} 类别是: ", lda.predict(a))
print(f"{a} 类别概率分别是: ", lda.predict_proba(a))
a = np.array([[-12, -100, -91]])
print(f"{a} 类别是: ", lda.predict(a))
print(f"{a} 类别概率分别是: ", lda.predict_proba(a))
a = np.array([[-12, -0.1, -0.1]])
print(f"{a} 类别是: ", lda.predict(a))
print(f"{a} 类别概率分别是: ", lda.predict_proba(a))
a = np.array([[0.1, 90.1, 9.1]])
print(f"{a} 类别是: ", lda.predict(a))
print(f"{a} 类别概率分别是: ", lda.predict_proba(a))

3 LDA手写数字数据演示

3.1 导入函数

from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import matplotlib

3.2 导入数据

# 导入MNIST数据集
mnist = load_digits()
# 查看数据集信息
print('The Mnist dataeset:\n',mnist)
# 分割数据为训练集和测试集,7/3分
x, test_x, y, test_y = train_test_split(mnist.data, mnist.target, test_size=0.3, random_state=2)

3.3 输出图像

images = range(0,9)
plt.figure(dpi=100)
for i in images:
    plt.subplot(330 + 1 + i)
    plt.imshow(x[i].reshape(8, 8), cmap = matplotlib.cm.binary,interpolation="nearest")
# show the plot
plt.show()

3.4 建立模型

# 建立 LDA 模型
m_lda = LinearDiscriminantAnalysis()
# 训练模型
m_lda.fit(x, y)
# 进行模型预测
x_new = m_lda.transform(x)
# 可视化预测数据
plt.scatter(x_new[:, 0], x_new[:, 1], marker='o', c=y)
plt.title('MNIST with LDA Model')
plt.show()

3.5 预测模型

y_test_pred = m_lda.predict(test_x)
print("测试集的真实标签:\n", test_y)
print("测试集的预测标签:\n", y_test_pred)

# 统计结果指标
print(classification_report(test_y, y_test_pred))

# 计算混淆矩阵
C2 = confusion_matrix(test_y, y_test_pred)
# 打混淆矩阵
print(C2)
# 将混淆矩阵以热力图的防线显示
sns.set()
f, ax = plt.subplots()
# 画热力图
sns.heatmap(C2, cmap="YlGnBu_r", annot=True, ax=ax)  
# 标题 
ax.set_title('confusion matrix')
# x轴为预测类别
ax.set_xlabel('predict')  
# y轴实际类别
ax.set_ylabel('true')  
plt.show()

4 讨论

LDA模型还是比较简明扼要的,主要是针对于线性可分数据,判别目的就是使同类别的距离相近,使不同类别的距离隔远。对于非线性可分数据需要特别留意实际情况。

LDA是一种监督学习的降维技术,且每个样本都是区分类别输出的;区别于PCA,PCA是不考虑样本类别的无监督降维技术,但是目的是一样的,都可以理解为将同类别的数据。相比于后者,LDA我认为最大的优势就是基于监督可以参考类别的先验经验,即可以不断“叠加”;然鹅很硬性的一个缺点就是不适合对非高斯分布样本进行降维,这个问题PCA也存在。

目录
相关文章
|
2天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
11 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
5天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
11 2
|
6天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
20 1
|
6天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
21 1
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
23天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
52 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
12天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。