数据结构各内部排序算法总结对比及动图演示(插入排序、冒泡和快速排序、选择排序、堆排序、归并排序和基数排序等)1

简介: 数据结构各内部排序算法总结对比及动图演示(插入排序、冒泡和快速排序、选择排序、堆排序、归并排序和基数排序等)1


一、插入排序

插入排序包括直接插入排序,折半插入排序、希尔排序直接插入排序就是简单粗暴的插入,折半排序是利用了二分查找的插入排序,希尔排序是先局部后整体的插入排序。

其算法的主要思想就是每次将一个待排序的记录按其关键字大小插入到前面已经排好序的子序列,直到全部记录插入完成。

1.直接插入排序

①算法的执行过程:

对于待排序表L[1...n]假设在某个状态下,待排序元素为L(i),则L[1...i-1]为已经排好序的序列,L[i+1...n]为无序序列。

L(i)依次与L(i-1)...L(1)相比较,找出L(i)在有序序列中要插入的位置k

L[k...i-1]中的所有元素依次后移一个位置

L(i)复制到L(k)i后移,重复2.直到有序序列长度为n

②算法执行过程可视化演示:


③算法代码:

void InsertSort(ElemType A[], int n){
  for(int i = 2; i <= n; i++){        //默认首个元素为有序序列,将2~n位置的关键字依次插入 
    if(A[i] < A[i-1]){            //如果待插入元素小于有序序列最大元素,则需要插入 
      A[0] = A[i];            //A[0]为“哨兵”,用来存放待插入元素 
      for(int j = i-1; A[0] < A[j]; j--)  //从后往前查找待插入的位置 
        A[j+1] = A[j];          //依次向后移动 
      A[j+1] = A[0];            //找到位置之后,将待排序元素插入有序序列 
    }
  }
}

④性能分析:

1.空间效率:使用常数个辅助单元,空间复杂度为O(1)

2.时间效率:进行了n-1趟插入操作,每趟操作都分为比较和移动元素,所以与表的初始状态有关
最好情况下:表已经有序只需比较不需移动元素,此时时间复杂度为O(n);

最坏情况下:此时为逆序,比较次数为2+3+……+n,总的移动次数为(2+1)+(3+1)+……+(n+1)

平均情况下:出现概率随机取最好和最坏的平均值,总的比较和移动次数约为(1/4)n2.所以插入排序算法的时间复杂度为O(n2)

3.稳定性: 稳定

4.适用性:适用于线性表为顺序存储或链式存储的情况。

2.折半插入排序

①算法的执行过程: 总体过程与上一个类似,只是在寻找插入位置的时候使用的二分查找算法

②算法执行过程可视化演示: 与上一个相同。

③算法代码:

void BinaryInsertSort(ElemType A[], int n){
  int low, high, mid;
  for(int i = 2; i <= n; i++){      //默认首个元素为有序序列,将2~n位置的关键字依次插入
    A[0] = A[i];            //A[0]为“哨兵”,用来存放待插入元素
    low = 1, high = i-1;
    while(low <= high){         //low=high时表明查找到要插入的位置 
      mid = (low+high)/2;
      //为了保证稳定,相等的情况需要查找右半子表 
      if(A[mid] > A[0]) high = mid-1; //查找左半子表 
      else low = mid+1;       //查找右半子表 
    }
    for(int j = i-1; j >= high+1; j--)  //从后往前查找待插入的位置
      A[j+1] = A[j];          //依次向后移动
    A[high+1] = A[0];         //将待排序元素插入有序序列
  }
}

④性能分析:

1.空间效率:与直接插入排序相同空间复杂度为O(1)

2.时间效率:进行了n-1趟插入操作,每趟操作都分为比较和移动元素,比较操作与表的初始状态无关,为O(n log2n),移动次数取决于初始状态,所以折半插入排序时间复杂度为O(n2)
3.稳定性: 不稳定

4.适用性:仅适用于线性表为顺序存储的情况。

3.希尔排序

希尔排序的由来:当待排序序列为基本有序时,插入排序复杂度可以提高至O(n),所以我们可以让整体基本有序,也就是说部分有序,最后使用插入排序进行排序。由此得出希尔排序,也称缩小增量排序
①算法的执行过程:

希尔排序思想即先局部后整体,首先设置增量d,把待排序的表分为k个子表对每个子表排序后,增量d变为原来的一半直到减小为d=1.

此时的表已经基本有序,进行最后一趟排序之后得到有序序列,这里在每个子表中使用的排序算法仍是插入排序.

②算法执行过程演示:


③算法代码:

void ShellSort(ElemType A[], int n){
  //通过增量d把序列分为多个子表,外层for循环控制增量的变化 
  for(int dk = n/2; dk >= 1; dk /= 2){
    //对于每一个增量得到的子表进行插入排序 
     for(int i = dk+1; i <= n; i++){
      if(A[i] < A[i-dk]){     //如果待插入元素小于有序序列最大元素,则需要插入       
        A[0] = A[i];      //将元素暂存到A[0],但在这里并没有起到哨兵的作用 
        for(int j = i-dk; j > 0 && A[0] < A[j]; j -= dk)
          A[j+dk] = A[j];   //依次向后移动
        A[j+dk] = A[0];     //将待排序元素插入有序序列
      }
    }
  }
} 

④性能分析:

1.空间效率:使用常数个辅助单元,空间复杂度为O(1)

2.时间效率:由于希尔排序的复杂度依赖增量序列的函数,所以时间复杂度分析比较困难。当n在某个特定范围时,其时间复杂度为O(n1.3),最坏情况下为O(n2)。
3.稳定性:不稳定

4.适用性:仅适用于线性表为顺序存储的情况。


二、交换排序

此类排序是根据序列中两个元素关键字的比较结果来对换这两个记录在序列中的位置。

1.冒泡排序

①算法的执行过程:

冒泡排序是一种基于比较的简单交换排序,会进行多轮交换,在每趟排序中,从后往前两两比较相邻元素的值,若为逆序,则交换他们。
在每趟排序完成后,都会将当前待排序序列中最小的元素放到第一个位置(或最大的元素放到最后一个位置)。

最多进行n-1趟处理后,所有元素就能排好。第i趟排序要进行n-i次比较。

②算法执行过程可视化演示:


③算法代码:

void BubbleSort(ElemType A[], int n){
  for(int i = 0; i < n-1; i++){   //一共n-1趟
    for(int j = 0; j < n-1-i; j++){ //对应每一趟的比较
      if(A[j] > A[j+1]){      //若为逆序则交换
        swap(A[j], A[j+1]);
      }
    }
  } 
}

④性能分析:

1.空间效率:使用常数个辅助单元,空间复杂度为O(1)

2.时间效率:最好情况下时间复杂度为O(n),最坏情况下初始为逆序,需要n-1趟排序,第i趟需要n-i次关键字的比较,每次比较都需要移动元素3次来交换元素位置,所以最坏情况和平均情况复杂度都为O(n2).
3.稳定性:稳定

4.适用性:适用于线性表为顺序存储和链式存储的情况。

拓展(链式存储的冒泡排序):

void sort_list(PNODE pHead){
  int i,j,t;
  PNODE p, q;
  int len= length_list(pHead);
  for (i=0,p=pHead->pNext;i<len-1;++i,p=p->pNext){
    for (j=i+1,q=p->pNext;j<len;++j,q=q->pNext){
      if (p->data > q->data){
        t = p->data;
        p->data = q->data;
        q->data = t;
      }
    }
  }
}

2.快速排序

①算法的执行过程:

  • 快速排序是一种基于分治思想的交换排序
  • 在待排表L[1...n]中任取一个元素pivot作为枢轴(或基准)
    通过一趟排序将待排序表划分为两个部分L[1...k-1]L[k+1...n],使得L[1...k-1]中所有元素小于pivot,L[k+1...n]中所有元素大于pivot。
  • 此时的枢轴元素privot已经放到了最终的位置上。
  • 递归的对两个子表重复以上步骤,直到每个子表只有一个元素或为空。

②算法执行过程演示:


③算法代码:

//划分操作 
int Partition(ElemType A[], int low, int high){
  ElemType pivot = A[low];  //定义第一个元素为枢轴元素 
  while(low < high){
    while(low < high && A[high] > pivot) high--;
    A[low] = A[high];   //从后往前找到第一个小于枢轴的元素放到左边 
    while(low < high && a[low] < pivot) low++;
    A[high] = A[low];   //从前往后找到第一个大于枢轴的元素放到右边 
  }
  A[low] = pivot;       //将枢轴元素放到最终的位置 
  return low;         //返回枢轴元素的位置 
}
//递归的进行快排
void QuickSort(ElemType A[], int low, int high){
  if(low < high){             //如果两个指针的位置相反或者相等,表明递归结束 
    int pos = Partition(A, low, high);  //找到枢轴元素的位置 
    QuickSort(A, low, pos-1);     //递归排序左子表 
    QuickSort(A, pos+1, high);      //递归排序右子表 
  }
} 

④性能分析:

1.空间效率:由于快排是递归的,所以空间复杂度与递归深度有关。
二分递归空间复杂度最好情况下为O(log2n),最坏情况下进行n-1次调用,深度为O(n)
2.时间效率:与划分的好坏有关

最坏情况下每层递归都是最大限度的不对称(两个区域分别包含n-1和0个元素),复杂度为O(n2)也就是对应初始排序表基本有序或基本逆序

最理想情况每层递归能能完美的划分,复杂度为O(nlog2n)。得到的两个子问题规模都小于n/2

3.稳定性:不稳定

4.适用性:适用于线性表为顺序存储的情况。

目录
打赏
0
0
0
0
1
分享
相关文章
|
1月前
|
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
48 9
 算法系列之数据结构-二叉树
|
30天前
|
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
42 3
 算法系列之数据结构-Huffman树
|
1月前
|
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
69 22
|
5月前
|
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
499 9
|
5月前
|
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
74 1
|
3月前
|
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
180 77
|
2月前
|
STL——栈和队列和优先队列
通过以上对栈、队列和优先队列的详细解释和示例,希望能帮助读者更好地理解和应用这些重要的数据结构。
32 11
☀☀☀☀☀☀☀有关栈和队列应用的oj题讲解☼☼☼☼☼☼☼
### 简介 本文介绍了三种数据结构的实现方法:用两个队列实现栈、用两个栈实现队列以及设计循环队列。具体思路如下: 1. **用两个队列实现栈**: - 插入元素时,选择非空队列进行插入。 - 移除栈顶元素时,将非空队列中的元素依次转移到另一个队列,直到只剩下一个元素,然后弹出该元素。 - 判空条件为两个队列均为空。 2. **用两个栈实现队列**: - 插入元素时,选择非空栈进行插入。 - 移除队首元素时,将非空栈中的元素依次转移到另一个栈,再将这些元素重新放回原栈以保持顺序。 - 判空条件为两个栈均为空。
|
3月前
|
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
【数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】初始化队列、销毁队列、判断队列是否为空、进队列、出队列等。本关任务:编写一个程序实现环形队列的基本运算。(6)出队列序列:yzopq2*(5)依次进队列元素:opq2*(6)出队列序列:bcdef。(2)依次进队列元素:abc。(5)依次进队列元素:def。(2)依次进队列元素:xyz。开始你的任务吧,祝你成功!(4)出队一个元素a。(4)出队一个元素x。
91 13
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
|
3月前
|
【C++数据结构——栈与队列】链栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现链栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储整数,最大
65 9