【数据结构】树的概念

简介: 树之所以被称为树是因为

Halo,这里是Ppeua。平时主要更新C语言,C++,数据结构算法......感兴趣就关注我吧!你定不会失望。


🌈个人主页:主页链接


🌈算法专栏:专栏链接


    我会一直往里填充内容哒!


🌈LeetCode专栏:专栏链接


目前在刷初级算法的LeetBook 。若每日一题当中有力所能及的题目,也会当天做完发出


🌈代码仓库:Gitee链接


🌈点击关注=收获更多优质内容🌈


809c89c988374fe381cdefdcb34edbf4.jpg


本章来记录下最近新学习的树的基础概念以及基础公式,大概会分为几个章节讲完。


1.初识树


树之所以被称为树是因为


现实生活中的树是长这样的:



数据结构中树是长这样的,看起来就像将其倒过来而形成的。所以在数据结构中,我们把长这样形状(由一个根,若干个节点与叶子组合起来,且各个节点之间有且只有一条路到达根)称为树



除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。 也就是说,每一颗子树都是不相交的。


这里引入一些概念:


              除根节点外,每个节点有且只有一个父节点

               一颗N个节点的树有N-1条边


树的相关定义:


节点的度:该节点拥有的子树个数.如A为6


叶子:度为0的节点


父亲节点/孩子节点:若一个节点有子节点,则该节点为子节点的父亲节点,反之该子节点为孩子节点


兄弟节点:两个拥有同样父亲的节点


节点层次/树的深度(高度):该节点距离根的层数称为层次,根为第一层.深度为最大的层次


节点祖先:从根到该节点所经分治的所有节点.例如A为所有节点的祖先


节点子孙:与祖先定义相反:以某节点为根,则其所有子节点都为其节点子孙



在结构中的存储:


因为树的定义为:一个节点可以拥有若干个子节点.所以我们没有办法通过一个节点来直接记录其所有子节点.所以我们通常才用以下这种模式来记录.



也就是一个节点中有两个指针分别指向子节点与其兄弟节点.还有一个变量来存储数据


typedef int DataType;
struct Node
{
struct Node* _firstChild1; // 第一个孩子结点
struct Node* _pNextBrother; // 指向其下一个兄弟结点
DataType _data; // 结点中的数据域
};


2.二叉树的概念


相比于树,二叉树具有以下特点:每个数的度为[0,1,2]三种可能,也就是一个节点最多有两个子节点.

且二叉树的两个节点顺序不能颠倒,具有左右节点的概念


特殊的二叉树:


满二叉树:


同一层下都有/无子节点,在概念上来看就是,节点总数为2^k-1其就为满二叉树



完全二叉树:


除去最后一层,为满二叉树,最后一层从左向右分布子节点.满二叉树为特殊的完全二叉树



二叉树公式:


根的深度为1,部分教材上为0,但若这棵树是空树(没有节点)按照教材上的定义,此时深度还是为0嘛?所以统一按1来计算


双亲节点计算:(child-1)/2


左儿子:(parent*2+1)


右儿子:(parent*2+2)



对于一颗非空二叉树,其一层上最多有2^(h-1)个节点,反之其深度为log(n+1)

深度为h的二叉树,其节点最大总数为2^h-1,

二叉树度为0的节点为n0,度为1的节点为n1,度为2的节点为n2,则有以下关系:n0=n2+1

题目:




用到n0=n2+1的公式,则n0=200



用到n0=n2+1的公式,2n=n2+1+n2+n1 根据完全二叉树的定义,n1只会有0个或者1个.所以n0=n


完结撒花:


🌈本篇博客的内容【数据结构:树的概念】已经结束。


🌈若对你有些许帮助,可以点赞、关注、评论支持下博主,你的支持将是我前进路上最大的动力。


🌈若以上内容有任何问题,欢迎在评论区指出。若对以上内容有任何不解,都可私信评论询问。


🌈诸君,山顶见!

目录
相关文章
|
算法
数据结构之博弈树搜索(深度优先搜索)
本文介绍了使用深度优先搜索(DFS)算法在二叉树中执行遍历及构建链表的过程。首先定义了二叉树节点`TreeNode`和链表节点`ListNode`的结构体。通过递归函数`dfs`实现了二叉树的深度优先遍历,按预序(根、左、右)输出节点值。接着,通过`buildLinkedList`函数根据DFS遍历的顺序构建了一个单链表,展示了如何将树结构转换为线性结构。最后,讨论了此算法的优点,如实现简单和内存效率高,同时也指出了潜在的内存管理问题,并分析了算法的时间复杂度。
327 0
|
8月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
224 3
 算法系列之数据结构-Huffman树
|
8月前
|
存储 自然语言处理 数据库
【数据结构进阶】AVL树深度剖析 + 实现(附源码)
在深入探讨了AVL树的原理和实现后,我们不难发现,这种数据结构不仅优雅地解决了传统二叉搜索树可能面临的性能退化问题,还通过其独特的平衡机制,确保了在任何情况下都能提供稳定且高效的查找、插入和删除操作。
659 19
|
10月前
|
存储 C++
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
【数据结构——树】哈夫曼树(头歌实践教学平台习题)【合集】目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:任务描述 本关任务:编写一个程序构建哈夫曼树和生成哈夫曼编码。 相关知识 为了完成本关任务,你需要掌握: 1.如何构建哈夫曼树, 2.如何生成哈夫曼编码。 测试说明 平台会对你编写的代码进行测试: 测试输入: 1192677541518462450242195190181174157138124123 (用户分别输入所列单词的频度) 预
346 14
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
|
10月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
292 12
|
10月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
190 10
|
10月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
432 3
|
12月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
352 5
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
565 16
|
算法
数据结构之文件系统模拟(树数据结构)
本文介绍了文件系统模拟及其核心概念,包括树状数据结构、节点结构、文件系统类和相关操作。通过构建虚拟环境,模拟文件的创建、删除、移动、搜索等操作,展示了文件系统的基本功能和性能。代码示例演示了这些操作的具体实现,包括文件和目录的创建、移动和删除。文章还讨论了该算法的优势和局限性,如灵活性高但节点移除效率低等问题。
245 0

热门文章

最新文章