【COCO数据集】COCO API 解析图像数据和目标标签,vision-transformer DETR的相关transforms操作实现

简介: 【COCO数据集】COCO API 解析图像数据和目标标签,vision-transformer DETR的相关transforms操作实现

在大多数情况下,我们在为模型创建训练数据集时无需担心注释格式。 COCO API为我们提供了一系列的api函数,方便我们获取任务的图像数据和目标标签。

PaddleViT: COCODataset

COCO数据集有一个名为pycocotools的 python API,供用户轻松加载和使用COCO数据集进行检测、分割和其他cv任务。 以下是基于 pycocotools 实现COCO检测数据集的PaddleViT实现,并用于训练和验证。

CocoDataset Class

CocoDataset 类由 paddle.io.Dataset 类实现, 并需要两个函数 __getitem__ 与 __len__ , 即:

class CocoDetection(paddle.io.Dataset):
    def __init__(self, image_folder, anno_file, transforms, return_mask):
        super().__init__()
        ...
    def __getitem__(self, idx):
        ...
    def __len__(self):
        ...

__init__ method

在类的初始化方法中:

  1. 通过调用pycocotools api加载coco数据集的anno文件。
  2. 获取图像id并删除没有注释的图像。
  3. 通过init参数设置数据转换(预处理器)。
  4. 定义标签转换方法。(详情见下节)。
from pycocotools.coco import COCO
...
class CocoDataset():
    def __init__(self):
        super().__init__()
        # step1
        self.coco = COCO(anno_file)
        # step2
        ids = list(sorted(self.coco.imgs.keys()))
        self.ids = self._remove_images_without_annotations(ids)
        # step3
        self._transforms = transforms
        # step4
        self.prepare = ConvertCocoPolysToMasks(return_masks)
        self.root = img_folder

__getitem__ method

__getitem__方法将索引作为输入,并输出包含单张图像及其目标标签的(image, target) 对。在coco检测中,这个目标是一个类似于以下形式的 dict :

target = {'image_id': image_id, 'annotations': target}

image_id 是在coco注释中相同的图像id.

target 是键值对的字典,例如 bbox 和 mask. (英文版单词拼写错误)

__getitem__ 方法定义:

  1. 使用COCO API加载指定的图像及其标签
  2. 转换标签(如将掩码从多边形转换为掩码数组)
  3. 输入数据的预处理转换
def __getitem__(self, idx):
    image_id = self.ids[idx]
    image = self._load_image(image_id)
    target = self._load_target(image_id)
    target = {'image_id': image_id, 'annotations': target}
    image, target = self.prepare(image, target)
    if self._transform is not None:
        image, target = self._transform(image, target)
    return image, target

__len__ method

返回数据集中的样本数,与ids长度相同:

def __len__(self):
    return len(self.ids)

_load_image, _load_target methods

PIL.Image 和 COCO API 用于根据给定索引获取图像数据和原始目标标签.

def _load_image(self, idx):
    """ Return PIL Image (RGB) according to COCO image id"""
    path = self.coco.loadImgs(idx)[0]['file_name']
    return Image.open(os.path.join(self.root, path)).convert('RGB')
def _load_target(self, idx):
    """ Return image annos according to COCO image id"""
    return self.coco.loadAnns(self.coco.getAnnIds(idx))

ConvertCocoPolysToMasks Class

该类定义了以图像和标签为输入并输出图像数组和处理后的标签。

专门对于目标标签的处理:

  1. 去掉iscrowd=1的图像;
  2. 将[x1, y1, x2, y2]中的包围框转换为numpy数组类型,然后根据包围框裁剪图像;
  3. 将类标签转换为numpy数组;
  4. 如果返回掩码(对于分割任务),使用coco api将多边形数据转换为掩码数组;
  5. 如果返回关键点(用于关键点检测),则将关键点加载到数组中;
  6. 消除面积为0的包围框;
  7. 将处理后的标签保存在target字典中。

Transforms Module

在转换模块(transforms.py)中定义了多种数据压缩方法。 定义我们自己的模块而不是使用paddle视觉转换的原因是,每个数据变换都必须应用于图像数据集其目标标签,例如bbox和掩码。假设在训练期间对图像数据应用类随机裁剪操作,则该图像中的bbox必需应用相同的裁剪。

Validation transforms

DETR 的验证转换具有以下操作:

  • RandomResize(): 将图像和标签调整为具有相同比例的特定大小。
  • ToTensor(): 将图像数据转换为 paddle.Tensor
  • Normalize(): 均值$-mean$和$/std$

Training transforms

DETR的训练转换具有以下操作:

  • RandomHorizontalFlip() 随机水平翻转数据。
  • RandomSelect() 随机选择两个子操作之一: (1) 一个单个 RandomResize 步骤; (2) 一个 三步骤操作: RandomReize, RandomSizeCrop, 以及 RandomResize
  • ToTensor(): 将图像数据转换为 paddle.Tensor
  • Normalize(): 图像数据标准化, $-mean$ 和 $/std$

RandomHorizontalFlip()

此变换需要初始化参数中的概率用来控制是否应用反转的随机性。

class RandomHorizontalFlip():
    def __init__(self, p=0.5):
        self.p = p
    def __call__(self, image, target):
        if random.random() < self.p:
            return hflip(image, target)
        return image, target

hflip 方法定义了图像和目标(包含包围框和盐吗的真实标注值的字典)的水平翻转操作。

RandomSelect()

RandomSelect()有一个prob值控制选择它的两个子操作之一的随机性。

class RandomSelect():
    """ Random select one the transforms to apply with probablity p"""
    def __init__(self, transforms1, transforms2, p=0.5):
        self.transforms1 = transforms1
        self.transforms2 = transforms2
        self.p = p
    def __call__(self, image, target):
        if random.random() > self.p:
            return self.transforms1(image, target)
        return self.transforms2(image, target)

两个转换操作在DETR训练中使用:

  • RandomResize()
  • RandomResize() + RandomSizeCrop() + RandomResize()

RandomResize()

RandomResize有两个参数:sizes 和 max_size. 该方法随机选择sizes中的一个值作为图像短边的目标尺寸,同时保持图像的比例不变。但是,如果图像的长边大于max_size(当使用所选尺寸作为短边时),则将图像的长边设置为max_size,而较短的尺寸需要重新计算以保持图像长宽比例不变。

必须在bbox和掩码使用相同的尺寸调整操作。 通过乘以高度和宽度的比例可以转换包围框。可以通过插值和二值化来转换掩码以获得缩放掩码(如果 values > 0.5则设置为1,否则设置为0)。

RandomSizeCrop()

RandomSizeCrop 将min_size和max_size 作为输入,然后将裁减图像中的随机区域作为输出。输出区域的尺寸为 [randint(min_size, max_size), randint(min_size, max_size)].

RandomSizeCrop 分为三个步骤实现:

  • STEP1: 给定 min_size, max_size 和原始图像尺寸,生成随机图像宽度和图像高度。
  • STEP2: 给定裁剪后的图像大小,随机选择图像内裁减区域的位置。这个区域可以用 [top, left, height, width]表示.
  • STEP3: 给定裁剪区域,裁剪图像和目标的标签,例如 包围框和掩码.

具体来说,我们实现了一个crop方法,其输入

(1)在[top, left, height, width]中的裁剪区域,

(2) 原始图像 以及 (3) 目标标签,然后返回裁剪后的图像和裁剪后的标签。

(请注意,在裁剪之后,原始包围框或者掩码也会被裁剪,甚至在裁剪后的图像中看不到,因此,我们必须从目标标签中消除那些无效的框和掩吗。)

ToTensor()

ToTensor 将图像数据从PIL.Image转换为paddle.Tensor, 返回图像张量和相应的标签,通过以下方式可以实现:

import paddle.vision.transforms as T
class ToTensor:
    def __call__(self, image, target):
        return T.to_tensor(image), target

Normalize()

在 Normalize方法中, 除了数据归一化(-mean & /std), 我们还将包围框从 [x0, y0, x1, y1] 归一化为 [cx, cy, w, h], 根据图像尺寸归一化为相对坐标. 实现方式如下:

class Normalize():
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std
    def __call__(self, image, target=None):
        # -mean, / std
        image = T.functional.normalize(image, mean=self.mean, std=self.std)
        if target is None:
            return image, None
        target = target.copy()
        # from xyxy -> cxcywh -> relative coords
        h, w = image.shape[-2:]
        if 'boxes' in target and target['boxes'].shape[0] != 0:
            boxes = target['boxes']
            boxes = box_xyxy_to_cxcywh_numpy(boxes)
            boxes = boxes / np.array([w, h, w, h], dtype='float32')
            target['boxes'] = boxes
        return image, target
目录
相关文章
|
5天前
|
JSON 前端开发 API
如何调用体育数据足篮接口API
本文介绍如何调用体育数据API:首先选择可靠服务商并注册获取密钥,接着阅读文档了解基础URL、端点、参数及请求头,然后使用Python等语言发送请求、解析JSON数据,最后将数据应用于Web、App或分析场景,同时注意密钥安全、速率限制与错误处理。
|
5天前
|
供应链 数据挖掘 API
揭秘天猫详情 API 接口:开启电商数据新大门
天猫详情API接口是电商数据利器,助力选品、市场调研与销售预测。通过获取商品价格、销量、评价等信息,提升决策效率,赋能企业精准运营,抢占市场先机。
24 0
|
5天前
|
JSON 自然语言处理 监控
淘宝关键词搜索与商品详情API接口(JSON数据返回)
通过商品ID(num_iid)获取商品全量信息,包括SKU规格、库存、促销活动、卖家信息、详情页HTML等。
|
5天前
|
Java API 开发者
揭秘淘宝详情 API 接口:解锁电商数据应用新玩法
淘宝详情API是获取商品信息的“金钥匙”,可实时抓取标题、价格、库存等数据,广泛应用于电商分析、比价网站与智能选品。合法调用,助力精准营销与决策,推动电商高效发展。(238字)
39 0
|
9天前
|
安全 NoSQL API
拼多多:通过微信支付API实现社交裂变付款的技术解析
基于微信JSAPI构建社交裂变支付系统,用户发起拼单后生成预订单与分享链接,好友代付后通过回调更新订单并触发奖励。集成微信支付、异步处理、签名验签与Redis关系绑定,提升支付成功率与裂变系数,实现高效安全的闭环支付。
133 0
|
9天前
|
存储 算法 API
唯品会智能分仓API技术解析:基于收货地址自动匹配最近仓库
唯品会智能分仓API通过地理编码与Haversine距离算法,自动将订单匹配至最近仓库,提升配送效率、降低成本。本文详解其技术原理、实现步骤与应用优势,助力开发者构建高效物流系统。(239字)
53 0
|
12天前
|
供应链 监控 安全
1688商品详情API接口实战指南:合规获取数据,驱动B2B业务增长
1688商品详情API(alibaba.product.get)是合规获取B2B商品数据的核心工具,支持全维度信息调用,助力企业实现智能选品、供应链优化与市场洞察,推动数字化转型。
|
12天前
|
人工智能 供应链 API
淘宝API商品详情接口全解析:从基础数据到深度挖掘
淘宝API商品详情接口不仅提供基础数据,更通过深度挖掘实现从数据到洞察的跨越。开发者需结合业务场景选择合适分析方法,利用AI标签、区块链溯源等新技术,最终实现数据驱动的电商业务创新。
|
12天前
|
缓存 监控 供应链
亚马逊 MWS API 实战:商品详情精准获取与跨境电商数据整合方案
本文详细解析亚马逊MWS API接口的技术实现,重点解决跨境商品数据获取中的核心问题。文章首先介绍MWS接口体系的特点,包括多站点数据获取、AWS签名认证等关键环节,并对比普通电商接口的差异。随后深入拆解API调用全流程,提供签名工具类、多站点客户端等可复用代码。针对跨境业务场景,文章还给出数据整合工具实现方案,支持缓存、批量处理等功能。最后通过实战示例展示多站点商品对比和批量选品分析的应用,并附常见问题解决方案。该技术方案可直接应用于跨境选品、价格监控等业务场景,帮助开发者高效获取亚马逊商品数据。
|
15天前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南

推荐镜像

更多
  • DNS